
1. Introduction HW/SW Codesign 
Is about: specification & modelling of mixed HW/SW-Solutions at high 

abstraction levels, Optimized partitioning, scheduling & estimation with holistic 

HW/SW-component consideration to improve design quality (cost reduction, 

time-to market) and optimized performance (low latency, high system 

throughput) 

Motivation: increasing complexity & function diversity/performance, lower cost 

& shorter development cycles 

Embedded System: application specific processing system embedded in bigger 

technical context, consists of cooperating optimized HW/SW components 

Requirements for HW/SW Systems:  

- RAS (Reliability, Availability, Serviceability): when R(t)=exp(-λt) 

𝑅(𝑡) = 𝑀𝑇𝑇𝐹(𝑠𝑦𝑠𝑡𝑒𝑚) = ∑ 𝑀𝑇𝑇𝐹(𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠) = ∑
1

𝑓𝑎𝑖𝑙𝑖𝑢𝑟𝑒𝑟𝑎𝑡𝑒

 

A(t) = MTTF/(MTTF + MTTR) 

𝑆(𝑡) = 𝑀𝑇𝑇𝑅 (𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑝𝑎𝑖𝑟) 

- Efficiency: Cost, energy, execution time, area 

- Real-time capability: system reacts to external stimuli from environment in 

defined time; Hard real-time condition: Non-compliance may lead to system 

failure 

- Flexibility (freely programmable CPU resources) Risk minimization, Time-to-

market, Post-shipment upgrades 

Computational density: 

Compute operations per area 

and time CD=ops/Lmin²; 

Computing Power CP=CD*N 

with N area in squares Lmin² 

Functional diversity: number of 

operations which can be 

changed instantaneously of compute entity 

Moore’s Law: doubling of chip capacity every 2-3 years, how to deal with 

design gap? 

Design Productivity Improvements by raised levels of abstraction: Polygons 

mask layout ➔Transistor circuity➔Logic gates (standard cells)➔RTL (Register 

Transfer Block, ALUs, Registers…) design➔HW-description languages and 

behavioural synthesis 

Platform based SOC Design: Conquer design complexity by reuse maximization: 
Shorter development cycles & higher chances for (first time) fault-free Design. 
Standard on-Chip busses/interfaces, CPU’s, SW-development environments 

Abstraction Levels: 

 
 

2. Design Methodology 
System design: process to implement a desired function with a given set of 

physical components;  

Appropriate design process: Improves quality of the product, Reduces cost and 

development time (time-to-market) 

Design Flow: has proven practical value, identifies design faults during early 

phases of design (at high abstraction level), Avoid time consuming and costly 

iterations across multiple abstraction levels; Top-Down-Design 

- Specification: Description of system 

behavior with formal, executable models 

- Exploration: Comparison of alternative 

realizations with respect to cost, 

performance, robustness, … 

- Refinement: Synthesis of a structural 

system representation out of the 

functional specification 

- Design space exploration: roots on efficient estimation and simulation 

techniques which allow design characteristic evaluation prior to costly 

realization / implementation 

Design at High Layers of Abstraction: Higher efficiency in design representation 

(few lines of HDL code represent multiple 1000 logic gates) and Oversees a 

much bigger implementation space (Avoids local optima) 

Design Verification by Simulation: Simulation can’t achieve exhaustive 

coverage of input combinations: 32-bit ALU has 232 x 232 = 264 input 

combinations, but is meaningful to reasonable subset of input combinations; 

Typical input patterns obtain confidence in design but cannot prove correctness 

nor completeness 

Simulation 

Acceleration:  -Divide 

and Conquer: Parallel 

simulation of system 

blocks, - Mixed-Level 

Simulation: Simulate 

components at 

different level of 

detail, Reduction of 

simulated real-time: 1s 

real time can be 

eternity (seed config with saturated states); 

Design Views: 

 

 

3. Specification & Modeling 
Specification: defines supported functionality of system -> model is useful 

Models: describe how a system functions; Characteristics: Formal 

(Complete/partial) description of a system, without unnecessary detail 

(abstraction), Understandable and simple to modify 

Architectures: describe how the system is implemented 

Virtual Prototypes: allow for the HW and 

SW components of a system to be 

developed in parallel (instead of sequential) 

by an ISA compatible HW-model  

Model Classification: 

 

Graph Models: - 

 State oriented: states (vertices) connected by state transitions (edges), 

triggered by external events; best suited for describing control units (real-time 

controllers, timing-latency important) 

Moore State Machine:  Mealy State Machine:  

 

 

+: No combinatorial path (limits 
logic depth),useideticaldesignstyle 

 

𝐭𝐬𝐞𝐭𝐮𝐩 + 𝐭𝐩𝐝 + 𝐍 ∗ 𝐭𝐠𝐚𝐭𝐞 < 𝟏/𝐟 

-: Large number of states 

 

 

+: Fewer states, clear layout; Most 
general FSM 

-: Long combinatorial paths when 
multiple FSMs are concatenated; 
output depend on current state 
and input Avoid whenever 
possible! 

Control Flow Graph (CFG) 

a directed, possibly cyclic graph; Vertices represent 
code without jumps; Edges represent jumps in the 
control flow 

Transitions in a CFG are triggered solely by the 
completion of the preceding block 

Only a single branch is taken to transition from one 
block to the next (unique!) 

 

- Activity oriented: describe a system as a set of actions which resolve 

dependencies. best suited for transformational systems (digital signal 

processing; data passed through a transfer function at a fixed rate.) 

Data Flow Graph (DFG) 

describe the data dependencies 
between a number of operations 

a directed, acyclic graph; 
Vertices =operations; Edges = 
data flow; , multiple-edges being 
traversed possible (unique) 

DFG’s calculations are triggered 
by availability of data 

cannot portray branches in code, 
but can depict parallelization 

 

- Structure Oriented Model: 
describe a system as a set of 
physical components and their 
interconnects; used to depict 
the physical configuration of a 
system. 

 

- Data Oriented Model: describe a system as 
a hierarchy of data structures, best suited 
for describing systems in which the 
structural representation of data is more 
important than the system’s functionality 
(e.g. databases) 

 

- Combined Models: merges benefits of simpler models, allows complete 

description of a complex system. best for systems that span a large design 

domain, e.g. real-time systems or ASICs. 

Control Data Flow Graph: 

Simultaneous description of the 
control-structure (e.g. branches) 
and data dependencies 

CFG: State machine representing 
the sequential control flow; The 
operations contained within a 
block (vertex) are expanded in 
form of a DFG 

DFG: NOP operations provide a 
uniform entry and exit point for 
each block  

 

Model Characteristics: 

Concurrency: often simpler to split system into concurrent sub-systems: e.g. 2 

FSMs with 1 state is simpler than 1 FSM with 2 states. 

Data oriented concurrency Control oriented concurrency 

No specifc order, single 
assignment rule: every variable 
appaers only once on the left 
hand  

 

Explicit control instructions (fork-
join concurrent behaviour) 
determine order of operations

 

State Transitions: transitions depend on conditions/states; system with N-

states can have up to N² transitions => control centric behavior 

Hierarchy: real systems are too complex to be viewed in entirety ➔ hierarchy 

splits system into smaller subsystems so developers can focus on their sub-

system (allows reuse, not in depth understanding needed) 

Structural hierarchy Behavioural/functional hierarchy 

Every component is made up of a 
sub-structure to lower level of 
abstraction 

 

Divides functions into sequential 
or concurrent sub-functions 

 

Program Structures/Constructs: many functions can be described best by 

sequential algorithms including branches, iterations, subroutines.. 

Completion/Abschluss: process ability to indicate it has stopped: All 

calculations are made or all variables got assigned their new value 

Communication: Connect HW/SW subsystems 

Shared-Memory Message-passing 

Sending process writes global 
variable into shared resource; all 
receiving processes can now read 
var; sync must be done separate 

 

 

1. Data between processes is 
exchanged through 
communication channels (uni-
bidirectional, point-to-point, 
shared bus) 

2. channel can be blocking on 
non-blocking transfer 

-blocking-trans: sending process 
waits until receiving process hast 
accepted data 

-non-blocking-trans: sending 
process writes data in queue and 
continues processing. Receiver 
can read it at its leisure => 
standard today, additional 
memory for queue needed. 

 

Synchronization: concurrent processes are never fully independent from each 

other. Sync to exchange data; Connect HW/SW subsystems 

Control oriented sync Data oriented sync 

Control structure of functions 
determine sync 

 

Sync by useing inter-process 
communication (shared memory, 
message passing) 

 

Exeption Handling: Events like a reset or interrupt can abrupt terminate a 

process. If such event/exception occurs control is passed to a pre-defined 

exception handling routine. 

Non-Determinism: allows specification of multiple options due to unclear best 

suiting operations for app. ➔ put off final decision for later in design process 

4. System Synthesis & HW/SW Partitioning 
Design synthesis: Allocation: Selection and provisioning of processing 

resources; Mapping: Assignment of functions to resources; Scheduling: 

Determination of execution sequences and start times for tasks/processes 

under consideration of data dependencies in the task graph 

Task Graph: (DFG) Vertex = tasks/processes; edges= data dependencies 

 

Schedule: assigns each task vi a start time tj=τ(vi), so that 

τ(vj)𝑠𝑡𝑎𝑟𝑡  ≥  τ(vi)𝑠𝑡𝑎𝑟𝑡 + 𝑑𝑖𝑡𝑒𝑥𝑒 

Latency:  L max{τ(vi) +  di} −  min{τ(vi)} 

Resource Graph: 

 

 

 

 

 

 
 

Allocation: function α(rk) assigns each resource a number of 

available resource instances 

Mapping: rk = β(vi) indicates a resource type, γ(vi) indicates the 

instance of the resource type rk , which executes the task vi 

Architecture Graph: 

 

Partition: assigns each vertex vi of task graph to exactly one vertex qi of 

architecture graph; Objective is to identify partition with the lowest cost for a 

given target function. 

Target function: 𝐹(𝑃) = k1 ∗ area(P) + k2 ∗ latncy(P) + k3 ∗ power =  min.  

 

Pareto-Analysis and Design Space 

Reduction: Every combination of 

architecture/mapping corresponds to a 

design point in the multi dimensional space 

of possible target functions; Elimination of 

suboptimal design points via Pareto-

Analysis (design point that cannot be 

improved in any target function without 

being deteriorated in at least one other 

target function 

Communications Vertices: Assignment of 

costs c(rk) and estimated communication latencies between 

tasks 

Classification of partitioning methods: Constructive vs. 

transformational/iterative 

Classification of partitioning algorithms: structural vs. 

functional 

Criteria for partitioning: Abstraction level, Task granularity, 

Metrics and Estimation, Target function 

Target/Cost-functions:  

𝑐𝑜𝑠𝑡_𝑓(𝑃) = k1 ∗ area(P) + k2 ∗ latncy(P) +  k3 ∗ power 

𝑐𝑜𝑠𝑡_𝑓(𝑃) = k1 ∗ h(area, area̅̅ ̅̅ ̅̅ ) + k2 ∗ h(ltncy, ltncy̅̅ ̅̅ ̅̅ ̅) +  k3

∗ h(pwr, pwr̅̅ ̅̅ ̅)  

 h(): Zero cost function indicates how close metric is to target value (0 if x<x) 

Closeness-functions: Measure indicating a force to group two objects during 

partitioning process; increased by number of connections/data/memory rages… 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠(𝑝𝑖, 𝑝𝑗) =
𝑘1 ∗ 𝑖𝑛𝑝𝑢𝑡𝑠𝑖,𝑗 + 𝑤𝑖𝑟𝑒𝑠𝑖,𝑗

𝑀𝑎𝑥𝐶𝑜𝑛𝑛(𝑃)𝑘2
∗

𝑠𝑖𝑧𝑒𝑚𝑎𝑥

𝑀𝑖𝑛(𝑠𝑖𝑧𝑒𝑖 , 𝑠𝑖𝑧𝑗)𝑘3
 

First term prefers objects with common data; Second term fosters largest 

possible groups while avoiding that all objects 

Partitioning Methods: Complexity of partitioning problem O (mn) with m: 

architecture components and n: task objects (e.g. n = 20, m = 4 = 1012 possible 

partitions) ➔ Cannot be dealt with „exhaustive search“ ➔ use heuristic 

methods instead of exact ones (like ILP – integer linear programming); 

Constructive algorithms: Sequential adding of objects to existing groups based 

on closeness functions; Usually serve as start partitions for later usage of 

iterative methods; Difficult to identify or define a meaningful closeness function 

- Random grouping:  tasks are randomly mapped to resources in sequential 

fashion; complexity O(n)  

- Hierarchical Clustering: (Functional) object / task is assigned to a group; 

Subsequent recalculation of closeness functions; Iteration of above steps till 

termination condition is fulfilled; Termination criteria: Number of remaining 

clusters/groups or getting below a certain closeness boundary (e.g. ≥ 15); 

Characteristics O(n2); applicable to sets with large number of objects; cannot 

overcome local minima - Multistage Clustering: Alternative method with 

different closeness functions per partitioning iteration 

 

resource type rK 

ϵVT 

realizability of task vi on 

resource rK (can be on more than 

one resource) 

 

Cost function (e.g. 

area) for rK 

Weight function assigns 

execution time on rK 

Task vi ϵ V 

Vertex ki: function 

resource (CPU, Memory…) 

Edge e: direct 

communication channel 
(unidirectional); bi-directional is 

2 entities in Ea 

Data dependency 

between tasks vi 

and vj (here: time) 



Transformational algorithms/Iterative methods: (Iteratively) modifys already 

existing partitions with the expectation to find an even better solution; Typically 

uses target functions as optimization objective; Computation complexity of 

iterative methods grows linearly with number of partitioning alternatives 

investigated 

- Local Search: Start at: Initial solution; Iteration: Selection of solution(s) in 

neighbourhood of current solution due to cost function ➔ Acceptance of best 

neighbour as new solution for next iteration; can escape local minima 

 

- Group Migration – Min Cut: Move objects to different groups and determine 

the resulting deltas in target function; Object with biggest reduction / smallest 

increase (prevents local minimums) in target function is moved to new group 

(calc internal & external costs!); Every object can be moved only once (prevents 

loops); When all objects have been moved, select partition with best target fcn 

 

- Ratio Cut method: Prevent clustering of all objects into a single group by:  

Ratio =  
cut(P)

size(p1) x size(p2)
  

- Simulated Annealing: Simulated degradation of temperature T such that a 

thermal equilibrium is attained for each T; Also worse solutions out of 

neighbourhood may be taken, i.e. deteriorations are accepted if exp(-delta_f/T) 

> config(x); As temperature is reduced stepwise the exponent e approaches to 

infinity ➔ probability to accept degradings is getting smaller with lower temp; 

SA is an exact (optimal) method when temperature degradation happens 

arbitrarily slowly; O(ex-xn);  

  

- Greedy Partitioning: Starting from a pure SW partition objects are moved into 

HW partition until performance requirements are met Pinit = { psw, phw } = { O, Ø 

}, minimize HW portion for reasons: area, development effort 

- Gupta Partitioning: Starting from a pure HW partition, objects are moved to 

SW partition as long as performance requirements are still met and target 

function is improved Pinit = { psw, phw } = { O, Ø }, minimize SW portion while 

considering performance condition and target function optimization 

- Tabu Search: Heuristic search method; fast and nearly optimal solving of 

optimization problems; Starting: initial solution; Iteration: picks the best 

neighbour or the one with least degradation of result; Loops are prevented by 

considering only solutions which haven't been considered before (storing of last 

n solutions in TabuFifo); Escapes from local minima; Accepting a new solution 

implies; removal of oldest solution from TabuFifo (if TabuFifo is full); Length of 

TabuFifo influences effectiveness of method TabuFifo too small: Loops may 

occur; too large: Possibly no new neighbours are found which weren’t 

considered yet 

 

5. Scheduling 
Aim: Determines the execution sequence and start times of tasks between 

different and onto the same resource under consideration of data 

dependencies in the task graph 

Classification: 

Preemptive scheduling: Possibility to interrupt execution of a task during run 

time (to benefit other task) and resume execution on same/different resource; 

Only meaningful when processing time considerably larger than 

dispatch/switch latency  

Static scheduling: Determines the execution sequence and start times of tasks 

at design or compilation time, Requires well-defined environment, mostly in 

data flow problems, + lower scheduling complexity at run time 

Scheduling without resource constraints: (Theoretically) relevant to determine 

the lower bound for (processing) latency 

- As Soon As Possible (ASAP): Every task is executed as early as possible; 

Characteristics: Local, constructive 

algorithm; Typically results in 

suboptimal solutions; O(xn); no 

constraints 

- As Late As Possible (ALAP): define a 

latency limit LL; mobility μ of task 

gives start time window:  

μ(vi) = τ(vi)L - τ(vi)S; if μ(vi)=0, the vi is 

part of critical path 

Timing Constraints: Absolute: Deadlines: Latest possible start and termination 

times of tasks; Release time: Earliest possible start time of tasks; Relative: time 

relationships between tasks (intersected min/max nr of time steps between) 

Scheduling with resource constraints: Considers availability of limited 

resources during scheduling; Optimization problems: Determine minimum 

latency under a given allocation α; Minimize cost (area) for given latency bound 

LL; Scheduling with constraints are NP-hard; Heuristic methods required 

- ASAP/ALAP with Conditional Task Shift: Starting point is an ASAP-/ALAP 

schedule; Check if schedule obeys resource constraint: e.g. α(mult) = 2; α(ALU) 

= 2; In case of resource constraint violation, tasks with positive mobility are 

shifted to later (ASAP)/ earlier (ALAP) time slot 

- List Scheduling: Enhancement of ASAP considering global criteria (Nr. of 

succeeding vertices, Weight of the path (longest path), Mobility of vertices) to 

determine execution sequence of tasks; In each step select vertices with 

maximum priority to start. (but check dependency’s in task graph first!) 

 

 

Periodic scheduling: Scheduling of iterative tasks with execution interval 

(period) P for planning loops and Pipelining (Concurrent scheduling of sub-tasks 

from different iterations); τ(vi, n) = τ(vi) + n P; n: iteration index 

Concurrent Scheduling of iterations: simultaneous processing of tasks belonging 

to different iterations ➔ otherwise sequential 

Not-overlapping Schedules: Tasks 
scheduled in the base interval 
[0,…,P] do not expand over the 
boundaries t = 0 und t = P. Relevant 
for architectures with 
synchronization points at interval 
boundaries. (here also concurrent) 

 

Overlapping Schedules: Tasks may 
expand beyond interval boundaries, 
however, repeat with period P. 
(here also concurrent) 

 

Sequential Scheduling of iterations: 
All tasks belonging to iteration n 
have to be completely finished 
before tasks of the subsequent 
iteration may be started. 

 

Fully-static Scheduling: All iterations 
of a task are bound to the same 
resource (instance). 

 

Cyclo-static with periodicity K: K 
subsequent iterations of a task may 
be bound to different resources. 
The resource of the iteration (K + n) 
has to be the same as the resource 
of the iteration n.  

Dynamic scheduling: Determines the execution sequence and start times of 

tasks during run time, mostly applied to control flow problems; information 

that is known at runtime only can be taken into account 

Dispatch latency LD: max time between stop of vi and start of vj on 

same resource 

Resource load U: Given: G(V, E) with a single resource type of 

allocation 1 and a schedule of latency L: 𝑈 =
∑ 𝑑𝑖

𝐿
∗ 100% 

Processing time tex: tex(vi) = τe(vi) - τb(vi) with tb(vi): vi uses resource 

for the first time; τe(vi): vi is completely processed (finishing time) 

Wait time tW: tW(vi) = τe(vi) – tr(vi) – di with tr: earliest possible 

start time (release time) 

Flow time tF: tF(vi) = τe(vi) – tr(vi) 

Lateness tL: tL(vi) = τe(vi) – td(vi) with td: deadline (latest possible 

finishing time) 

Tardiness tT:  tT(vi) = max{τe(vi) – td(vi), 0 } 

Optimization Criteria: Multi-user systems: Minimization of the mean wait time  

𝑊 =
1

𝑉
∗ ∑ 𝑡𝑊(𝑣𝑖) and flow time: 𝐹 =

1

𝑉
∗ ∑ 𝑡𝐹(𝑣𝑖); Minimization of the 

max response time (time between process start and output of first valid 

results); Real-time systems: In addition to mean wait times and flow times, 

misses of deadlines are of special interest: max Lateness = max(t(vi)); Number 

of tasks that miss their Deadline sum(u(vi)) 

Strategies:  

First come first served (FCFS): simple to realize (like FIFO); Suited for uniform 

tasks: similar processing times, identical priorities, no real-time requirements 

but fluctuation of tWait: 

Shortest job first (SJF): Minimization of mean wait time or flow time, requires 

sorting of tasks, not preemptive 

Shortest remaining time next (SRTN): Pre-emptive version of SJF; dynamic 

priority assignment; At any time t the task with the min remaining processing 

time is selected from all schedulable tasks; in real time systems only estimation 

Round robin (RR): Circular queue with 

fix time interval Q, after which the 

context is switched at the latest; Tasks 

are processed in turn; Advantage: 

avoids „starvation“ of tasks; 

Drawback: Frequently long wait times 

 

6. Design Estimation Techniques 
Design parameter estimation allows to bound relevant system aspects prior to 

system implementation to support design decisions and system optimization. 

Estimation Metrics:  

Quality and Costs: HW (test, manufacture), SW (memory, development), 

Performance (throughput, clock cycles), Communitcation (transfer rate), Power, 

Time (Design, Time-to-market) 

Estimation accuracy: 𝐴𝑐𝑐 = |𝐸(𝐷) − 𝑀(𝐷)|; E(D) is the estimated and M(D) 

the measured values for a design D. Relative error: 𝑅𝐸 =
|𝐸(𝐷)−𝑀(𝐷)|

𝑀(𝐷)
  

Estimation fidelity: Fidelity F is defined as percentile of correctly predicted 

comparisons between multiple implementations: 

 

 

HW-Cost Metrics: Manufacturing (area, SoC – CPU, Mem), Module (Pin Count), 

Test (time on test device), Development (Team size, Complexity, lion share!) 

HW-Performance Metrics: Compute performance, Communication band with, 

throughput, Processing Time/Latency, Clock Rate 

𝑇𝑒𝑥𝑒 = 𝑁𝑖𝑛𝑠𝑡𝑟 ∗ 𝑇 ∗ 𝐶𝑃𝐼 

SW-Cost Metrics: HW (components: CPU, RAM), Development (Teamsize, 

dominant!); Memory Demand (Program and Data Memory) 

SW-Performance Metrics: MIPS (million instructions per second, equal to 

MFLOPS or MACS); Memory (different access latencies: Cache, SRAM, DRAM) 

Communication Metrics: Max. Bit Rate (channel specific upper bound data 

transfer rate); Average Bit Rate; directly impacts processing performance 

Other Metrics:  

Power dissipation: insignificant for λ>0,1µm, in future dominant because of 

leakage currents 

𝑃 = 𝑃𝑠𝑡𝑎𝑡 + 𝑃𝑠ℎ𝑜𝑟𝑡 + 𝑃𝑐𝑎𝑝;                  𝑃𝑐𝑎𝑝 = 𝛼𝑓𝑐𝑙𝑘𝐶𝑙𝑜𝑎𝑑𝑉𝑑𝑑² 

Design-for-Test: BIST (build in self test); LSSD (Level sensitive scan design) 

Development time: can be significantly reduced by usage of standard, 

programmable components  

Time to market: The earlier a product is available on the market, the bigger are 

its business volume and profit margins; „6 months delay in product entry may 

result in 33% less profit over a period of 5 years“  

Maximum Operator Latency: functional unit of type rk with latency delay(rk)  

 
Slack: (Positive) slack denotes that fraction of the clock period (zeitdauer) 

which is not utilized (nicht ausgelastet) by a functional unit vk  

;  

; 

 

Pipelining: with P equal stages, put in registers to rise clock 

Software Estimation by Generic Model: Advantage: One compiler sufficient for 

multiple CPUs – CPU technology data contain details such as CPI, register set, 

ISA, etc.; Easy retargeting to different CPU by means of new technology data 

set; No need that compiler exists already at design time of CPU; Disadvantage: 

Lower accuracy – Technology data is estimated  

 

Instruction Count Estimation: 

 

 

 

Memory Space: Program memory (Aggregate instructions of all tasks times 

operand size of the respective CPU) 

  

 

 

 

 

 

7. VHDL/SystemC Praktikum 
SystemC based on C++ with Extensions: SystemC class library to implement 

(Concurrency, Communication, Time management) and Simulation kernel 

Structure of a SystemC Module: Header File (module.h): contains: Module 

declaration (Ports, Sockets; Member variables); Signals; Sub-modules 

Implementation File (module.cpp): Implementation/definition: Member 

functions; Processes; (Constructor) 

Connecting Modules with Signals: 

Member Functions and Processes: can 

read / write signals, ports, member 

variables; call interface functions of 

sockets via: signal_or_port.read(); 

Processes:  

- Enable modelling concurrency (Communicate via signals or events, Processes 

cannot be called directly by other processes / member functions ➔ triggered 

by sensitivity (event, signal));  

- Are special member functions (No return values and no parameters) 

- Have to be registered with the simulation kernel in the module constructor 

- 2 types of processes: SC_METHOD (On activation, process is infinitely fast 

executed from beginning to end) and SC_THREAD (On activation, commands 

are executed infinitely fast until next wait statement, on next activation until 

subsequent wait) 

- Evaluate-update scheme to simulate concurrency: Phase1 (Process Execution, 

PE): all processes with change on a sensitive signal / event are executed 

(sequence undefined); Phase2 (Signal Assignment, SA): assignment of modified 

signals; Repeat PE and SA phases until system is stable, then increase 

simulation time; The sequence PE/SA is called “delta cycle” (no simulation time 

is consumed) 

Transaction: call of a function of an interface 

Transaction Level Modeling (TLM): Targets: Reduce modelling effort; Allow for 

easier model adaptability; Increase simulation speed; Enable efficient 

architecture exploration; Use models: SW development on virtual prototype, 

Architecture exploration, HW verification, Modeling styles: loosely timed, 

approximately timed, Support a range of different abstractions, Interaction via 

blocking or non-blocking transactions, Different number of transaction phases,  

Definition of a generic payload (extensible), Important standard for IP 

Intellectual Property) exchange, Mainly targeted at memory mapped bus 

 

VHDL: 

Entity: defines a „Black Box“ with information: Model Name and Ports (inputs / 

outputs); No information concerning function and its implementation -> 

Architecture; more than one architecture design per Entity possible but an 

architecture belongs to exactly one Entity (allocate by Configuration) 

Functionality Approaches: Modelling behaviour (through processes and 

concurrent signal assignments); Modelling the structure (through instantiation 

of given components and their interconnection) 

Inherent parallelism of HW: All statements in the statements section of the 

architecture are CONCURRENT ! The sequence of the statements is irrelevant! 

(Inherent parallelism of HW) 

Processes: Complex functionalities cannot be modeled using only concurrent 

signal assignments -> Process: Interface between concurrent and sequential 

modeling; Acts like one concurrent statement, however, process statements 

are executed sequentially (if-else structure)  

Concurrency – Delta Cycles: Evaluate-Update scheme: 1. PA (Process Activation 

phase): all activated processes are executed, sequence undefined; 2. SA (Signal 

Assignment phase ): signals get newly assigned values; If SA activates further 

processes, repetition of PA-SA Sequence until stable state is reached 

Sequential Statements: If-Else, Case-When 

Modeling Synchronous Circuits: Assigned signals will become registers in HW;  

Apply event-Attribute only to clock! 

Typical Modeling Errors: More than one 

assignments to the same signal in concurrent 

signal assignment/process; Missing signal 

assignment when modeling combinatorial logic ➔ 

Undesired Latch for Signal s2 

IF a=‘1’ THEN; s1 <= b OR c; s2 <= b AND c; ELSE s1 

<= b XOR c; 

The executable model is machine readable, can be simulated, and is intended 

toadvance the understanding of the system’s behavior. In addition, the model  


