
1. Introduction HW/SW Codesign
Is about: specification & modelling of mixed HW/SW-Solutions at high

abstraction levels, Optimized partitioning, scheduling & estimation with holistic

HW/SW-component consideration to improve design quality (cost reduction,

time-to market) and optimized performance (low latency, high system

throughput)

Motivation: increasing complexity & function diversity/performance, lower cost

& shorter development cycles

Embedded System: application specific processing system embedded in bigger

technical context, consists of cooperating optimized HW/SW components

Requirements for HW/SW Systems:

- RAS (Reliability, Availability, Serviceability): when R(t)=exp(-λt)

𝑅(𝑡) = 𝑀𝑇𝑇𝐹(𝑠𝑦𝑠𝑡𝑒𝑚) = ∑ 𝑀𝑇𝑇𝐹(𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠) = ∑
1

𝑓𝑎𝑖𝑙𝑖𝑢𝑟𝑒𝑟𝑎𝑡𝑒

A(t) = MTTF/(MTTF + MTTR)

𝑆(𝑡) = 𝑀𝑇𝑇𝑅 (𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑝𝑎𝑖𝑟)

- Efficiency: Cost, energy, execution time, area

- Real-time capability: system reacts to external stimuli from environment in

defined time; Hard real-time condition: Non-compliance may lead to system

failure

- Flexibility (freely programmable CPU resources) Risk minimization, Time-to-

market, Post-shipment upgrades

Computational density:

Compute operations per area

and time CD=ops/Lmin²;

Computing Power CP=CD*N

with N area in squares Lmin²

Functional diversity: number of

operations which can be

changed instantaneously of compute entity

Moore’s Law: doubling of chip capacity every 2-3 years, how to deal with

design gap?

Design Productivity Improvements by raised levels of abstraction: Polygons

mask layout ➔Transistor circuity➔Logic gates (standard cells)➔RTL (Register

Transfer Block, ALUs, Registers…) design➔HW-description languages and

behavioural synthesis

Platform based SOC Design: Conquer design complexity by reuse maximization:
Shorter development cycles & higher chances for (first time) fault-free Design.
Standard on-Chip busses/interfaces, CPU’s, SW-development environments

Abstraction Levels:

2. Design Methodology
System design: process to implement a desired function with a given set of

physical components;

Appropriate design process: Improves quality of the product, Reduces cost and

development time (time-to-market)

Design Flow: has proven practical value, identifies design faults during early

phases of design (at high abstraction level), Avoid time consuming and costly

iterations across multiple abstraction levels; Top-Down-Design

- Specification: Description of system

behavior with formal, executable models

- Exploration: Comparison of alternative

realizations with respect to cost,

performance, robustness, …

- Refinement: Synthesis of a structural

system representation out of the

functional specification

- Design space exploration: roots on efficient estimation and simulation

techniques which allow design characteristic evaluation prior to costly

realization / implementation

Design at High Layers of Abstraction: Higher efficiency in design representation

(few lines of HDL code represent multiple 1000 logic gates) and Oversees a

much bigger implementation space (Avoids local optima)

Design Verification by Simulation: Simulation can’t achieve exhaustive

coverage of input combinations: 32-bit ALU has 232 x 232 = 264 input

combinations, but is meaningful to reasonable subset of input combinations;

Typical input patterns obtain confidence in design but cannot prove correctness

nor completeness

Simulation

Acceleration: -Divide

and Conquer: Parallel

simulation of system

blocks, - Mixed-Level

Simulation: Simulate

components at

different level of

detail, Reduction of

simulated real-time: 1s

real time can be

eternity (seed config with saturated states);

Design Views:

3. Specification & Modeling
Specification: defines supported functionality of system -> model is useful

Models: describe how a system functions; Characteristics: Formal

(Complete/partial) description of a system, without unnecessary detail

(abstraction), Understandable and simple to modify

Architectures: describe how the system is implemented

Virtual Prototypes: allow for the HW and

SW components of a system to be

developed in parallel (instead of sequential)

by an ISA compatible HW-model

Model Classification:

Graph Models: -

 State oriented: states (vertices) connected by state transitions (edges),

triggered by external events; best suited for describing control units (real-time

controllers, timing-latency important)

Moore State Machine: Mealy State Machine:

+: No combinatorial path (limits
logic depth),useideticaldesignstyle

𝐭𝐬𝐞𝐭𝐮𝐩 + 𝐭𝐩𝐝 + 𝐍 ∗ 𝐭𝐠𝐚𝐭𝐞 < 𝟏/𝐟

-: Large number of states

+: Fewer states, clear layout; Most
general FSM

-: Long combinatorial paths when
multiple FSMs are concatenated;
output depend on current state
and input Avoid whenever
possible!

Control Flow Graph (CFG)

a directed, possibly cyclic graph; Vertices represent
code without jumps; Edges represent jumps in the
control flow

Transitions in a CFG are triggered solely by the
completion of the preceding block

Only a single branch is taken to transition from one
block to the next (unique!)

- Activity oriented: describe a system as a set of actions which resolve

dependencies. best suited for transformational systems (digital signal

processing; data passed through a transfer function at a fixed rate.)

Data Flow Graph (DFG)

describe the data dependencies
between a number of operations

a directed, acyclic graph;
Vertices =operations; Edges =
data flow; , multiple-edges being
traversed possible (unique)

DFG’s calculations are triggered
by availability of data

cannot portray branches in code,
but can depict parallelization

- Structure Oriented Model:
describe a system as a set of
physical components and their
interconnects; used to depict
the physical configuration of a
system.

- Data Oriented Model: describe a system as
a hierarchy of data structures, best suited
for describing systems in which the
structural representation of data is more
important than the system’s functionality
(e.g. databases)

- Combined Models: merges benefits of simpler models, allows complete

description of a complex system. best for systems that span a large design

domain, e.g. real-time systems or ASICs.

Control Data Flow Graph:

Simultaneous description of the
control-structure (e.g. branches)
and data dependencies

CFG: State machine representing
the sequential control flow; The
operations contained within a
block (vertex) are expanded in
form of a DFG

DFG: NOP operations provide a
uniform entry and exit point for
each block

Model Characteristics:

Concurrency: often simpler to split system into concurrent sub-systems: e.g. 2

FSMs with 1 state is simpler than 1 FSM with 2 states.

Data oriented concurrency Control oriented concurrency

No specifc order, single
assignment rule: every variable
appaers only once on the left
hand

Explicit control instructions (fork-
join concurrent behaviour)
determine order of operations

State Transitions: transitions depend on conditions/states; system with N-

states can have up to N² transitions => control centric behavior

Hierarchy: real systems are too complex to be viewed in entirety ➔ hierarchy

splits system into smaller subsystems so developers can focus on their sub-

system (allows reuse, not in depth understanding needed)

Structural hierarchy Behavioural/functional hierarchy

Every component is made up of a
sub-structure to lower level of
abstraction

Divides functions into sequential
or concurrent sub-functions

Program Structures/Constructs: many functions can be described best by

sequential algorithms including branches, iterations, subroutines..

Completion/Abschluss: process ability to indicate it has stopped: All

calculations are made or all variables got assigned their new value

Communication: Connect HW/SW subsystems

Shared-Memory Message-passing

Sending process writes global
variable into shared resource; all
receiving processes can now read
var; sync must be done separate

1. Data between processes is
exchanged through
communication channels (uni-
bidirectional, point-to-point,
shared bus)

2. channel can be blocking on
non-blocking transfer

-blocking-trans: sending process
waits until receiving process hast
accepted data

-non-blocking-trans: sending
process writes data in queue and
continues processing. Receiver
can read it at its leisure =>
standard today, additional
memory for queue needed.

Synchronization: concurrent processes are never fully independent from each

other. Sync to exchange data; Connect HW/SW subsystems

Control oriented sync Data oriented sync

Control structure of functions
determine sync

Sync by useing inter-process
communication (shared memory,
message passing)

Exeption Handling: Events like a reset or interrupt can abrupt terminate a

process. If such event/exception occurs control is passed to a pre-defined

exception handling routine.

Non-Determinism: allows specification of multiple options due to unclear best

suiting operations for app. ➔ put off final decision for later in design process

4. System Synthesis & HW/SW Partitioning
Design synthesis: Allocation: Selection and provisioning of processing

resources; Mapping: Assignment of functions to resources; Scheduling:

Determination of execution sequences and start times for tasks/processes

under consideration of data dependencies in the task graph

Task Graph: (DFG) Vertex = tasks/processes; edges= data dependencies

Schedule: assigns each task vi a start time tj=τ(vi), so that

τ(vj)𝑠𝑡𝑎𝑟𝑡 ≥ τ(vi)𝑠𝑡𝑎𝑟𝑡 + 𝑑𝑖𝑡𝑒𝑥𝑒

Latency: L max{τ(vi) + di} − min{τ(vi)}

Resource Graph:

Allocation: function α(rk) assigns each resource a number of

available resource instances

Mapping: rk = β(vi) indicates a resource type, γ(vi) indicates the

instance of the resource type rk , which executes the task vi

Architecture Graph:

Partition: assigns each vertex vi of task graph to exactly one vertex qi of

architecture graph; Objective is to identify partition with the lowest cost for a

given target function.

Target function: 𝐹(𝑃) = k1 ∗ area(P) + k2 ∗ latncy(P) + k3 ∗ power = min.

Pareto-Analysis and Design Space

Reduction: Every combination of

architecture/mapping corresponds to a

design point in the multi dimensional space

of possible target functions; Elimination of

suboptimal design points via Pareto-

Analysis (design point that cannot be

improved in any target function without

being deteriorated in at least one other

target function

Communications Vertices: Assignment of

costs c(rk) and estimated communication latencies between

tasks

Classification of partitioning methods: Constructive vs.

transformational/iterative

Classification of partitioning algorithms: structural vs.

functional

Criteria for partitioning: Abstraction level, Task granularity,

Metrics and Estimation, Target function

Target/Cost-functions:

𝑐𝑜𝑠𝑡_𝑓(𝑃) = k1 ∗ area(P) + k2 ∗ latncy(P) + k3 ∗ power

𝑐𝑜𝑠𝑡_𝑓(𝑃) = k1 ∗ h(area, area̅̅ ̅̅ ̅̅) + k2 ∗ h(ltncy, ltncy̅̅ ̅̅ ̅̅ ̅) + k3

∗ h(pwr, pwr̅̅ ̅̅ ̅)

 h(): Zero cost function indicates how close metric is to target value (0 if x<x)

Closeness-functions: Measure indicating a force to group two objects during

partitioning process; increased by number of connections/data/memory rages…

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠(𝑝𝑖, 𝑝𝑗) =
𝑘1 ∗ 𝑖𝑛𝑝𝑢𝑡𝑠𝑖,𝑗 + 𝑤𝑖𝑟𝑒𝑠𝑖,𝑗

𝑀𝑎𝑥𝐶𝑜𝑛𝑛(𝑃)𝑘2
∗

𝑠𝑖𝑧𝑒𝑚𝑎𝑥

𝑀𝑖𝑛(𝑠𝑖𝑧𝑒𝑖 , 𝑠𝑖𝑧𝑗)𝑘3

First term prefers objects with common data; Second term fosters largest

possible groups while avoiding that all objects

Partitioning Methods: Complexity of partitioning problem O (mn) with m:

architecture components and n: task objects (e.g. n = 20, m = 4 = 1012 possible

partitions) ➔ Cannot be dealt with „exhaustive search“ ➔ use heuristic

methods instead of exact ones (like ILP – integer linear programming);

Constructive algorithms: Sequential adding of objects to existing groups based

on closeness functions; Usually serve as start partitions for later usage of

iterative methods; Difficult to identify or define a meaningful closeness function

- Random grouping: tasks are randomly mapped to resources in sequential

fashion; complexity O(n)

- Hierarchical Clustering: (Functional) object / task is assigned to a group;

Subsequent recalculation of closeness functions; Iteration of above steps till

termination condition is fulfilled; Termination criteria: Number of remaining

clusters/groups or getting below a certain closeness boundary (e.g. ≥ 15);

Characteristics O(n2); applicable to sets with large number of objects; cannot

overcome local minima - Multistage Clustering: Alternative method with

different closeness functions per partitioning iteration

resource type rK

ϵVT

realizability of task vi on

resource rK (can be on more than

one resource)

Cost function (e.g.

area) for rK

Weight function assigns

execution time on rK

Task vi ϵ V

Vertex ki: function

resource (CPU, Memory…)

Edge e: direct

communication channel
(unidirectional); bi-directional is

2 entities in Ea

Data dependency

between tasks vi

and vj (here: time)

Transformational algorithms/Iterative methods: (Iteratively) modifys already

existing partitions with the expectation to find an even better solution; Typically

uses target functions as optimization objective; Computation complexity of

iterative methods grows linearly with number of partitioning alternatives

investigated

- Local Search: Start at: Initial solution; Iteration: Selection of solution(s) in

neighbourhood of current solution due to cost function ➔ Acceptance of best

neighbour as new solution for next iteration; can escape local minima

- Group Migration – Min Cut: Move objects to different groups and determine

the resulting deltas in target function; Object with biggest reduction / smallest

increase (prevents local minimums) in target function is moved to new group

(calc internal & external costs!); Every object can be moved only once (prevents

loops); When all objects have been moved, select partition with best target fcn

- Ratio Cut method: Prevent clustering of all objects into a single group by:

Ratio =
cut(P)

size(p1) x size(p2)

- Simulated Annealing: Simulated degradation of temperature T such that a

thermal equilibrium is attained for each T; Also worse solutions out of

neighbourhood may be taken, i.e. deteriorations are accepted if exp(-delta_f/T)

> config(x); As temperature is reduced stepwise the exponent e approaches to

infinity ➔ probability to accept degradings is getting smaller with lower temp;

SA is an exact (optimal) method when temperature degradation happens

arbitrarily slowly; O(ex-xn);

- Greedy Partitioning: Starting from a pure SW partition objects are moved into

HW partition until performance requirements are met Pinit = { psw, phw } = { O, Ø

}, minimize HW portion for reasons: area, development effort

- Gupta Partitioning: Starting from a pure HW partition, objects are moved to

SW partition as long as performance requirements are still met and target

function is improved Pinit = { psw, phw } = { O, Ø }, minimize SW portion while

considering performance condition and target function optimization

- Tabu Search: Heuristic search method; fast and nearly optimal solving of

optimization problems; Starting: initial solution; Iteration: picks the best

neighbour or the one with least degradation of result; Loops are prevented by

considering only solutions which haven't been considered before (storing of last

n solutions in TabuFifo); Escapes from local minima; Accepting a new solution

implies; removal of oldest solution from TabuFifo (if TabuFifo is full); Length of

TabuFifo influences effectiveness of method TabuFifo too small: Loops may

occur; too large: Possibly no new neighbours are found which weren’t

considered yet

5. Scheduling
Aim: Determines the execution sequence and start times of tasks between

different and onto the same resource under consideration of data

dependencies in the task graph

Classification:

Preemptive scheduling: Possibility to interrupt execution of a task during run

time (to benefit other task) and resume execution on same/different resource;

Only meaningful when processing time considerably larger than

dispatch/switch latency

Static scheduling: Determines the execution sequence and start times of tasks

at design or compilation time, Requires well-defined environment, mostly in

data flow problems, + lower scheduling complexity at run time

Scheduling without resource constraints: (Theoretically) relevant to determine

the lower bound for (processing) latency

- As Soon As Possible (ASAP): Every task is executed as early as possible;

Characteristics: Local, constructive

algorithm; Typically results in

suboptimal solutions; O(xn); no

constraints

- As Late As Possible (ALAP): define a

latency limit LL; mobility μ of task

gives start time window:

μ(vi) = τ(vi)L - τ(vi)S; if μ(vi)=0, the vi is

part of critical path

Timing Constraints: Absolute: Deadlines: Latest possible start and termination

times of tasks; Release time: Earliest possible start time of tasks; Relative: time

relationships between tasks (intersected min/max nr of time steps between)

Scheduling with resource constraints: Considers availability of limited

resources during scheduling; Optimization problems: Determine minimum

latency under a given allocation α; Minimize cost (area) for given latency bound

LL; Scheduling with constraints are NP-hard; Heuristic methods required

- ASAP/ALAP with Conditional Task Shift: Starting point is an ASAP-/ALAP

schedule; Check if schedule obeys resource constraint: e.g. α(mult) = 2; α(ALU)

= 2; In case of resource constraint violation, tasks with positive mobility are

shifted to later (ASAP)/ earlier (ALAP) time slot

- List Scheduling: Enhancement of ASAP considering global criteria (Nr. of

succeeding vertices, Weight of the path (longest path), Mobility of vertices) to

determine execution sequence of tasks; In each step select vertices with

maximum priority to start. (but check dependency’s in task graph first!)

Periodic scheduling: Scheduling of iterative tasks with execution interval

(period) P for planning loops and Pipelining (Concurrent scheduling of sub-tasks

from different iterations); τ(vi, n) = τ(vi) + n P; n: iteration index

Concurrent Scheduling of iterations: simultaneous processing of tasks belonging

to different iterations ➔ otherwise sequential

Not-overlapping Schedules: Tasks
scheduled in the base interval
[0,…,P] do not expand over the
boundaries t = 0 und t = P. Relevant
for architectures with
synchronization points at interval
boundaries. (here also concurrent)

Overlapping Schedules: Tasks may
expand beyond interval boundaries,
however, repeat with period P.
(here also concurrent)

Sequential Scheduling of iterations:
All tasks belonging to iteration n
have to be completely finished
before tasks of the subsequent
iteration may be started.

Fully-static Scheduling: All iterations
of a task are bound to the same
resource (instance).

Cyclo-static with periodicity K: K
subsequent iterations of a task may
be bound to different resources.
The resource of the iteration (K + n)
has to be the same as the resource
of the iteration n.

Dynamic scheduling: Determines the execution sequence and start times of

tasks during run time, mostly applied to control flow problems; information

that is known at runtime only can be taken into account

Dispatch latency LD: max time between stop of vi and start of vj on

same resource

Resource load U: Given: G(V, E) with a single resource type of

allocation 1 and a schedule of latency L: 𝑈 =
∑ 𝑑𝑖

𝐿
∗ 100%

Processing time tex: tex(vi) = τe(vi) - τb(vi) with tb(vi): vi uses resource

for the first time; τe(vi): vi is completely processed (finishing time)

Wait time tW: tW(vi) = τe(vi) – tr(vi) – di with tr: earliest possible

start time (release time)

Flow time tF: tF(vi) = τe(vi) – tr(vi)

Lateness tL: tL(vi) = τe(vi) – td(vi) with td: deadline (latest possible

finishing time)

Tardiness tT: tT(vi) = max{τe(vi) – td(vi), 0 }

Optimization Criteria: Multi-user systems: Minimization of the mean wait time

𝑊 =
1

𝑉
∗ ∑ 𝑡𝑊(𝑣𝑖) and flow time: 𝐹 =

1

𝑉
∗ ∑ 𝑡𝐹(𝑣𝑖); Minimization of the

max response time (time between process start and output of first valid

results); Real-time systems: In addition to mean wait times and flow times,

misses of deadlines are of special interest: max Lateness = max(t(vi)); Number

of tasks that miss their Deadline sum(u(vi))

Strategies:

First come first served (FCFS): simple to realize (like FIFO); Suited for uniform

tasks: similar processing times, identical priorities, no real-time requirements

but fluctuation of tWait:

Shortest job first (SJF): Minimization of mean wait time or flow time, requires

sorting of tasks, not preemptive

Shortest remaining time next (SRTN): Pre-emptive version of SJF; dynamic

priority assignment; At any time t the task with the min remaining processing

time is selected from all schedulable tasks; in real time systems only estimation

Round robin (RR): Circular queue with

fix time interval Q, after which the

context is switched at the latest; Tasks

are processed in turn; Advantage:

avoids „starvation“ of tasks;

Drawback: Frequently long wait times

6. Design Estimation Techniques
Design parameter estimation allows to bound relevant system aspects prior to

system implementation to support design decisions and system optimization.

Estimation Metrics:

Quality and Costs: HW (test, manufacture), SW (memory, development),

Performance (throughput, clock cycles), Communitcation (transfer rate), Power,

Time (Design, Time-to-market)

Estimation accuracy: 𝐴𝑐𝑐 = |𝐸(𝐷) − 𝑀(𝐷)|; E(D) is the estimated and M(D)

the measured values for a design D. Relative error: 𝑅𝐸 =
|𝐸(𝐷)−𝑀(𝐷)|

𝑀(𝐷)

Estimation fidelity: Fidelity F is defined as percentile of correctly predicted

comparisons between multiple implementations:

HW-Cost Metrics: Manufacturing (area, SoC – CPU, Mem), Module (Pin Count),

Test (time on test device), Development (Team size, Complexity, lion share!)

HW-Performance Metrics: Compute performance, Communication band with,

throughput, Processing Time/Latency, Clock Rate

𝑇𝑒𝑥𝑒 = 𝑁𝑖𝑛𝑠𝑡𝑟 ∗ 𝑇 ∗ 𝐶𝑃𝐼

SW-Cost Metrics: HW (components: CPU, RAM), Development (Teamsize,

dominant!); Memory Demand (Program and Data Memory)

SW-Performance Metrics: MIPS (million instructions per second, equal to

MFLOPS or MACS); Memory (different access latencies: Cache, SRAM, DRAM)

Communication Metrics: Max. Bit Rate (channel specific upper bound data

transfer rate); Average Bit Rate; directly impacts processing performance

Other Metrics:

Power dissipation: insignificant for λ>0,1µm, in future dominant because of

leakage currents

𝑃 = 𝑃𝑠𝑡𝑎𝑡 + 𝑃𝑠ℎ𝑜𝑟𝑡 + 𝑃𝑐𝑎𝑝; 𝑃𝑐𝑎𝑝 = 𝛼𝑓𝑐𝑙𝑘𝐶𝑙𝑜𝑎𝑑𝑉𝑑𝑑²

Design-for-Test: BIST (build in self test); LSSD (Level sensitive scan design)

Development time: can be significantly reduced by usage of standard,

programmable components

Time to market: The earlier a product is available on the market, the bigger are

its business volume and profit margins; „6 months delay in product entry may

result in 33% less profit over a period of 5 years“

Maximum Operator Latency: functional unit of type rk with latency delay(rk)

Slack: (Positive) slack denotes that fraction of the clock period (zeitdauer)

which is not utilized (nicht ausgelastet) by a functional unit vk

;

;

Pipelining: with P equal stages, put in registers to rise clock

Software Estimation by Generic Model: Advantage: One compiler sufficient for

multiple CPUs – CPU technology data contain details such as CPI, register set,

ISA, etc.; Easy retargeting to different CPU by means of new technology data

set; No need that compiler exists already at design time of CPU; Disadvantage:

Lower accuracy – Technology data is estimated

Instruction Count Estimation:

Memory Space: Program memory (Aggregate instructions of all tasks times

operand size of the respective CPU)

7. VHDL/SystemC Praktikum
SystemC based on C++ with Extensions: SystemC class library to implement

(Concurrency, Communication, Time management) and Simulation kernel

Structure of a SystemC Module: Header File (module.h): contains: Module

declaration (Ports, Sockets; Member variables); Signals; Sub-modules

Implementation File (module.cpp): Implementation/definition: Member

functions; Processes; (Constructor)

Connecting Modules with Signals:

Member Functions and Processes: can

read / write signals, ports, member

variables; call interface functions of

sockets via: signal_or_port.read();

Processes:

- Enable modelling concurrency (Communicate via signals or events, Processes

cannot be called directly by other processes / member functions ➔ triggered

by sensitivity (event, signal));

- Are special member functions (No return values and no parameters)

- Have to be registered with the simulation kernel in the module constructor

- 2 types of processes: SC_METHOD (On activation, process is infinitely fast

executed from beginning to end) and SC_THREAD (On activation, commands

are executed infinitely fast until next wait statement, on next activation until

subsequent wait)

- Evaluate-update scheme to simulate concurrency: Phase1 (Process Execution,

PE): all processes with change on a sensitive signal / event are executed

(sequence undefined); Phase2 (Signal Assignment, SA): assignment of modified

signals; Repeat PE and SA phases until system is stable, then increase

simulation time; The sequence PE/SA is called “delta cycle” (no simulation time

is consumed)

Transaction: call of a function of an interface

Transaction Level Modeling (TLM): Targets: Reduce modelling effort; Allow for

easier model adaptability; Increase simulation speed; Enable efficient

architecture exploration; Use models: SW development on virtual prototype,

Architecture exploration, HW verification, Modeling styles: loosely timed,

approximately timed, Support a range of different abstractions, Interaction via

blocking or non-blocking transactions, Different number of transaction phases,

Definition of a generic payload (extensible), Important standard for IP

Intellectual Property) exchange, Mainly targeted at memory mapped bus

VHDL:

Entity: defines a „Black Box“ with information: Model Name and Ports (inputs /

outputs); No information concerning function and its implementation ->

Architecture; more than one architecture design per Entity possible but an

architecture belongs to exactly one Entity (allocate by Configuration)

Functionality Approaches: Modelling behaviour (through processes and

concurrent signal assignments); Modelling the structure (through instantiation

of given components and their interconnection)

Inherent parallelism of HW: All statements in the statements section of the

architecture are CONCURRENT ! The sequence of the statements is irrelevant!

(Inherent parallelism of HW)

Processes: Complex functionalities cannot be modeled using only concurrent

signal assignments -> Process: Interface between concurrent and sequential

modeling; Acts like one concurrent statement, however, process statements

are executed sequentially (if-else structure)

Concurrency – Delta Cycles: Evaluate-Update scheme: 1. PA (Process Activation

phase): all activated processes are executed, sequence undefined; 2. SA (Signal

Assignment phase): signals get newly assigned values; If SA activates further

processes, repetition of PA-SA Sequence until stable state is reached

Sequential Statements: If-Else, Case-When

Modeling Synchronous Circuits: Assigned signals will become registers in HW;

Apply event-Attribute only to clock!

Typical Modeling Errors: More than one

assignments to the same signal in concurrent

signal assignment/process; Missing signal

assignment when modeling combinatorial logic ➔

Undesired Latch for Signal s2

IF a=‘1’ THEN; s1 <= b OR c; s2 <= b AND c; ELSE s1

<= b XOR c;

The executable model is machine readable, can be simulated, and is intended

toadvance the understanding of the system’s behavior. In addition, the model

