1. Introduction HW/SW Codesign

Is about: specification & modelling of mixed HW/SW-Solutions at high
abstraction levels, Optimized partitioning, scheduling & estimation with holistic
HW/SW-component consideration to improve design quality (cost reduction,
time-to market) and optimized performance (low latency, high system
throughput)

Motivation: increasing complexity & function diversity/performance, lower cosf]
& shorter development cycles
Embedded System: application specific processing system embedded in bigger
technical context, consists of cooperating optimized HW/SW components
qui for HW/SW 3
- RAS (Reliability, Availability, Serviceability): when R(t)=exp(-At)
1
R(t) = MTTF (system) = z MTTF (subsystems) = Z _—
failiure, g,
A(t) = MTTF/(MTTF + MTTR)
S(t) = MTTR (Mean time to repair)

- Efficiency: Cost, energy, execution time, area
- Real-time capability: system reacts to external stimuli from environment in
defined time; Hard real-time condition: Non-compliance may lead to system

failure
- Flexibility (freely programmable CPU resources) Risk minimization, Time-to-
market, Post-shipment upgrades

Computational density:
Compute operations per area
and time CD=ops/Lmin?;
Computing Power CP=CD*N
with N area in squares Lmin?

w

w0,

Log Flexibility

Functional diversity: number of
operations which can be
changed instantaneously of compute entity

Log Compatational dersity
i ——}

1o

Moore’s Law: doubling of chip capacity every 2-3 years, how to deal with
design gap?

Design Productivity Improvements by raised levels of abstraction: Polygons
mask layout =»Transistor circuity=>Logic gates (standard cells)»RTL (Register
Transfer Block, ALUs, Registers...) design=»HW-description languages and

Simulation
Acceleration: -Divide
nd Conquer: Parallel
imulation of system
blocks, - Mixed-Level
Simulation: Simulate
komponents at
different level of
detail, Reduction of
imulated real-time: 1s

eal time can be
eternity (seed config with saturated states);

Design Views:

Implemantation Benavir | Srueture) Swcnre
p— Sructre Benaior
opmanen | | e e
Refinemant Absiract desion represantation _W’-';;f;n‘j:ﬁj:; o
Synthesis Eshavior More dr’a;l‘zmdm-r‘v;uumrd
Absuaction Detsied design reprasentston | M oten e
Goneration R P et e
Extraction Physies! geomeldc design Stcture

Implementation

Synthesis Behavior

System

Structure

3. Specification & Modeling

defines supported functionality of system -> model is useful

behavioural synthesis

Platform based SOC Design: Conquer design by reuse

IModels: describe how a system functions; Characteristics: Formal

Shorter development cycles & higher chances for (first time) fault-free Design.
Standard on-Chip busses/interfaces, CPU’s, SW-development environments

Abstraction Levels:

Level Hardware Software
System Network of communicating sub-systems / tasks | processes
which model the desired application or system functionality
Architectre | Processors, ASIC, Memory, | Interacting SW modules,
Module Buses, 110, processes.
RTL/Block | Counter, Comparator, ALUs, | lterative loops.
Registers program sequences. ..
Logic/ Logic gates, Flip-Fiops, Assignments, branches,
Expression arithmetic. logic operators, .

2. Design Methodology
System design: process to implement a desired function with a given set of
physical components;
Appropriate design process: Improves quality of the product, Reduces cost and
development time (time-to-market)
Design Flow: has proven practical value, identifies design faults during early
phases of design (at high abstraction level), Avoid time consuming and costly
iterations across multiple abstraction levels; Top-Down-Design

Complete/partial) description of a system, without unnecessary detail
abstraction), Understandable and simple to modify

Architectures: describe how the system is implemented

\Virtual Prototypes: allow for the HW and
W components of a system to be
developed in parallel (instead of sequential)
by an ISA compatible HW-model

_ parallel
Plan |

Testing |
[Model Classification:

Communicating fnite state machines (CFSM)
State-oriented
Classical state machines
Asynchronous Message Passing
Activity-orlented | (Kahn Process Networks)
Synchronous Message passing
Structure-oriented | Component connection diagram (CCD)

Discrete-time event model

IControl Flow Graph (CFG)

a directed, possibly cyclic graph; Vertices represent
code without jumps; Edges represent jumps in the

1
control flow f
Transitions in a CFG are triggered solely by the \"‘_f‘ e
completion of the preceding block e
4
Only a single branch is taken to transition from one ¥
snTE

block to the next (unique!)

Shared-Memory

Program Structures/Constructs: many functions can be described best by
kequential algorithms including branches, iterations, subroutines..

[Completion/Abschluss: process ability to indicate it has stopped: All
kcalculations are made or all variables got assigned their new value

ICommunication: Connect HW/SW subsystems

Message-passing

Irchitecture Graph:

Vertex ki: function
resource (CPU, Memory...)

VCHIP1

YCHIP3

Sending process writes global
variable into shared resource; all
receiving processes can now read

Activity oriented: describe a system as a set of actions which resolve
dependencies. best suited for transformational systems (digital signal
processing; data passed through a transfer function at a fixed rate.)

Pata Flow Graph (DFG)

var; sync must be done separate

Single
Assignment Form:

describe the data dependencies
between a number of operations
a directed, acyclic graph;
Vertices =operations; Edges =
data flow; , multiple-edges being
traversed possible (unique)
DFG’s calculations are triggered
by availability of data

cannot portray branches in code,
but can depict parallelization

- Structure Oriented Model:
describe a system as a set of
physical components and their
interconnects; used to depict

begin begin
varatio x v
Mo

end

procass P processa

begin o
varistie aratie
sand iz | COMEIC | oo iy

and s

1. Data between processes is
exchanged through
communication channels (uni-
bidirectional, point-to-point,
shared bus)

2. channel can be blocking on
non-blocking transfer

-blocking-trans: sending process
waits until receiving process hast
accepted data

-non-blocking-trans: sending
process writes data in queue and
continues processing. Receiver
canread it at its leisure =>
standard today, additional
memory for queue needed.

Edge e: direct
4/co’mmunication channel
(unidirectional);

2 entities in Ea

rectional is

Partition: assigns each vertex v; of task graph to exactly one vertex g; of
prchitecture graph; Objective is to identify partition with the lowest cost for a
Biven target function.

[Farget function: F(P) = k, * area(P) + k, * latncy(P) + k3 * power = min.

Control oriented sync

[synchronization: concurrent processes are never fully independent from each
other. Sync to exchange data; Connect HW/SW subsystems

Data oriented sync

Pareto-Analysis and Design Space
Reduction: Every combination of

Control structure of functions
determine sync

Sync by useing inter-process
communication (shared memory,

the physical configuration of a
system.

for describing systems in which the
structural representation of data is m
important than the system’s function
(e.g. databases)

Combined Models: merges benefits of

domain, e.g. real-time systems or ASICs.

Kontrol Data Flow Graph:

- Data Oriented Model: describe a system as
a hierarchy of data structures, best suited

ore

ality e I o W)

simpler models, allows complete

description of a complex system. best for systems that span a large design

message passing)

using status detsction

®
OOO
®

chitecture/mapping corresponds to a
Kdesign point in the multi space

Execulion time

7 kX

bf possible target functions; Elimination of cost

kuboptimal design points via Pareto- leader" _l

Inalysis (design point that cannot be

ymproved in any target function without /7
§ ! £ _performance

being deteriorated in at least one other |eader

arget function

[xeption Handling: Events like a reset or interrupt can abrupt terminate a
process. If such event/exception occurs control is passed to a pre-defined
exception handling routine.

on-Determinism: allows specification of multiple options due to unclear best

Simultaneous description of the
control-structure (e.g. branches)
and data dependencies

CFG: State machine representing
the sequential control flow; The
operations contained within a
block (vertex) are expanded in
form of a DFG

DFG: NOP operations provide a
uniform entry and exit point for
each block

CDFG=CFG +

uiting operations for app. = put off final decision for later in design process
4. System Synthesis & HW/SW Partitioning
Design synthesis: Allocation: Selection and provisioning of processing
Fesources; Mapping: Assignment of functions to resources; Scheduling:

[Determination of execution sequences and start times for tasks/processes
Junder consideration of data dependencies in the task graph

[Task Graph: (DFG) Vertex = tasks/processes; edges= data dependencies

Tme 1

IModel Characteristics:

IConcurrency: often simpler to split system into concurrent sub-systems: e.g. 2

ez
Data dependency
between tasks vi

and vj (here: time)

Tme 3

Tme s

State oriented: states (vertices) connected by state transitions (edges),
kriggered by external events; best suited for describing control units (real-time
ontrollers, timing-latency important)

assignment rule: every variable
appaers only once on the left
hand

- Specification: Description of system

Moore State Machine: Mealy State Machine:

behavior with formal, executable models
- Exploration: Comparison of alternative
realizations with respect to cost,
performance, robustness, ...

- Refinement: Synthesis of a structural
system representation out of the
functional specification

- Design space exploration: roots on efficient estimation and simulation
techniques which allow design characteristic evaluation prior to costly
realization / implementation

Design at High Layers of Abstraction: Higher efficiency in design representation|
(few lines of HDL code represent multiple 1000 logic gates) and Oversees a
much bigger implementation space (Avoids local optima)

Design Verification by Simulation: Simulation can’t achieve exhaustive
coverage of input combinations: 32-bit ALU has 2*2 x 2*? = 2 input
combinations, but is meaningful to reasonable subset of input combinations;
Typical input patterns obtain confidence in design but cannot prove correctness|

nfen

ais) =

+: Fewer states, clear layout; Most

+: No combinatorial path (limits
general FSM

logic depth),useideticaldesignstyle
-: Long combinatorial paths when
Tck = leogic * Tsetm * Tnd multiple FSMs are concatenated;
output depend on current state
and input Avoid whenever
possible!

Eoerup + tpa + N * tygye < 1/F

-: Large number of states

Time-oriented = —
: - i ’) . . .
AN Sy T e s epne) FSMs with 1 state is simpler than 1 FSM with 2 states.
Data-oriented
A S e BTy Data oriented concurrency Control oriented concurrency
No specifc order, single Explicit control instructions (fork-
Graph Models: - P 8! p (d

join concurrent behaviour)
determine order of operations

chedule: assigns each task v; a start time t;=t(vi), so that

T(Vstare = T(VDstare + ditexe
Latency: L max{t(vi) + di} — min{t(vi)}
Resource Graph:
Cost function (e.g.

resource type r¢
area) for rg

/v €Vr

tates can have up to N transitions => ¢

ystem (allows reuse, not in depth undel

Structural hierarchy

[state Transitions: transitions depend on

; system with N-
ontrol centric behavior

Hierarchy: real systems are too complex to be viewed in entirety = hierarchy
plits system into smaller subsystems so developers can focus on their sub-

rstanding needed)

Behavioural/functional hierarchy

1@ 1= multiplier 2 4 q;)AL;J .,
=/

30 N 8T

X /\'J'\ﬂk?() TR A

709 N Ty '\@

oL \Z(J/VK‘:)

Every component is made up of a
sub-structure to lower level of
abstraction

System

nor completeness

Divides functions into sequential
or concurrent sub-functions

realizability of task vi on
resource ry (can be on more than
one resource)

Weight function assigns
execution time on r¢

JAllocation: function a(rk) assigns each resource a number of
pvailable resource instances

rc = B(vi) indicates a resource type, y(vi) indicates the
nstance of the resource type r¢, which executes the task v;

K Costs
ICommunications Vertices: Assignment of -
kosts c(rk) and estimated communication latencies between
asks & m

Classification of partitioning methods: Constructive vs.
kransformational/iterative

Classification of partitioning algorithms: structural vs.
unctional

Criteria for partitioning: Abstraction level, Task granularity,
etrics and Estimation, Target function

[rarget/Cost-functions:

cost_f(P) = ky * area(P) + k, * latncy(P) + k, * power

cost_f (P) = k, = h(area,area) + k, = h(ltncy, Ttncy) + ks
* h(pwr, pwr)

h(): Zero cost function indicates how close metric is to target value (0 if x<x)

I - ions: Measure il a force to group two objects during

partitioning process; increased by number of connections/data/memory rages...
k1 = inputs; ; + wires, ; sizemax

*
MaxConn(P)*? Min(size;, siz))*3
First term prefers objects with common data; Second term fosters largest
possible groups while avoiding that all objects

cl

(i, pj) =

Partitioning Methods: Complexity of partitioning problem O (m") with m:
prchitecture components and n: task objects (e.g. n = 20, m = 4 = 1012 possible
partitions) =» Cannot be dealt with , exhaustive search” =» use heuristic
Imethods instead of exact ones (like ILP —integer linear programming);
[Constructive algorithms: Sequential adding of objects to existing groups based
Pon closeness functions; Usually serve as start partitions for later usage of
terative methods; Difficult to identify or define a meaningful closeness function

Random grouping: tasks are randomly mapped to resources in sequential
ashion; complexity O(n)

Hierarchical Clustering: (Functional) object / task is assigned to a group;
Bubsequent recalculation of closeness functions; Iteration of above steps till
ermination condition is fulfilled; Termination criteria: Number of remaining
klusters/groups or getting below a certain closeness boundary (e.g. 2 15);
ICharacteristics O(n?); applicable to sets with large number of objects; cannot
vercome local minima - Multistage Clustering: Alternative method with
Kifferent closeness functions per partitioning iteration

+ Recalculation of
closeness amang
neighboring tasks

* Recaleulation of

* Grouping of tasks A, B
because of highest
closeness

closeness (averaging)
among neighboring tasks
* Grouping of AB with C .

Transformational algorithms/Iterative methods: (Iteratively) modifys already
existing partitions with the expectation to find an even better solution; Typically
uses target functions as optimization objective; Computation complexity of
iterative methods grows linearly with number of partitioning alternatives
investigated

- Local Search: Start at: Initial solution; Iteration: Selection of solution(s) in
neighbourhood of current solution due to cost function = Acceptance of best
neighbour as new solution for next iteration; can escape local minima

@ Curentsolution's

Iteration i+2 | @ Neighbors N(s)

@ Selected new solution

Only meaningful when processing time considerably larger than
dispatch/switch latency

[tatic scheduling: Determines the execution sequence and start times of tasks
t design or compilation time, Requires well-defined environment, mostly in
data flow problems, + lower scheduling complexity at run time

Fcheduling without resource constraints: (Theoretically) relevant to determine
he lower bound for (processing) latency

As Soon As Possible (ASAP): Every task is executed as early as possible;
Characteristics: Local, constructive
plgorithm; Typically results in
kuboptimal solutions; O(x"); no

Solution space L

- Group Migration — Min Cut: Move objects to different groups and determine
the resulting deltas in target function; Object with biggest reduction / smallest
increase (prevents local minimums) in target function is moved to new group
(calc internal & external costs!); Every object can be moved only once (prevents
loops); When all objects have been moved, select partition with best target fcn

Min-Cut

Part 2 Part 3

B D.E

B A DE
B ACDE

1+1: delta cost = -13 for A to Part3
142 delta cost = -32 for C to Part 3

Ratio Cut method: Prevent clustering of all objects into a single group by:

Rati cut(P)
atio = ————————
size(p1) x size(p2)
Simulated Annealing: Simulated degradation of temperature T such that a

thermal equilibrium is attained for each T; Also worse solutions out of
neighbourhood may be taken, i.e. deteriorations are accepted if exp(-delta_f/T)
> config(x); As temperature is reduced stepwise the exponent e approaches to
infinity = probability to accept degradings is getting smaller with lower temp;
SA is an exact (optimal) method when temperature degradation happens
arbitrarily slowly; O(e*x");

1his lozal s 15 ner

reachablo ar mar at His very
low tempersture

uT=HOT uT=FROZEN

Camplete cost surtace reachsble, o
miasimum makes up a ba

Cost

‘Configurations.

Commguratans
- Greedy Partitioning: Starting from a pure SW partition objects are moved into
HW partition until performance requirements are met Piyx = { psw, Pow } = {0, @
}, minimize HW portion for reasons: area, development effort

Gupta Partitioning: Starting from a pure HW partition, objects are moved to
SW partition as long as performance requirements are still met and target
function is improved P = { Paw, Prw } ={ O, @ }, minimize SW portion while
considering performance condition and target function optimization
- Tabu Search: Heuristic search method; fast and nearly optimal solving of
optimization problems; Starting: initial solution; Iteration: picks the best

As Lat ossible (ALAP): define a
atency limit L; mobility p of task
Bives start time window:

(vi) = T(v))" - T(w)®; if p(vi)=0, the viis
part of critical path

M) = 0for vy, Va, Vs, Vi, Vs

u . represert ghbisai path

[Timing Constraints: Absolute: Deadlines: Latest possible start and termination
imes of tasks; Release time: Earliest possible start time of tasks; Relative: time
Felationships between tasks (intersected min/max nr of time steps between)
[cheduling with resource constraints: Considers availability of limited
esources during scheduling; Optimization problems: Determine minimum
atency under a given allocation a; Minimize cost (area) for given latency bound
LL; Scheduling with constraints are NP-hard; Heuristic methods required
ASAP/ALAP with Conditional Task Shift: Starting point is an ASAP-/ALAP
chedule; Check if schedule obeys resource constraint: e.g. a(mult) = 2; a(ALU)
F 2; In case of resource constraint violation, tasks with positive mobility are
hifted to later (ASAP)/ earlier (ALAP) time slot

List Scheduling: Enhancement of ASAP considering global criteria (Nr. of
kucceeding vertices, Weight of the path (longest path), Mobility of vertices) to
determine execution sequence of tasks; In each step select vertices with
Imaximum priority to start. (but check dependency’s in task graph first!)

) — Task d__|mapping priority
(A B A1 | |4
B |4| n|s
(c) cli1| r]|s
Le)p)
D2 |6
E |4 2|3
(F) (E)
(F) (E) F 3| n|a
Resources
Ly T R | -
—+—t —+—+——— +— P~
0 2 4] B0 12 1 18

Periodic scheduling: Scheduling of iterative tasks with execution interval
period) P for planning loops and Pipelining (Concurrent scheduling of sub-tasks’
rom different iterations); t(vi, n) = T(vi) + n P; n: iteration index

o different iterations = otherwise sequential

[pynamic scheduling: Determines the execution sequence and start times of
asks during run time, mostly applied to control flow problems; information
hat is known at runtime only can be taken into account
Dispatch latency Lo: max time between stop of vi and start of v; on
same resource
Resource load U: Given: G(V, E) with a single resource type of
di
EL *100%

pllocation 1 and a schedule of latency L: U =

Processing time tex: tex(Vi) = Te(Vi) - To(Vi) with tu(vi): vi uses resource

for the first time; te(vi): vi is completely processed (finishing time)

Wait time tw: tw(vi) = Te(Vi) — te(vi) — di with t:: earliest possible

start time (release time)

Flow time te: tr(vi) = Te(Vi) — ti(vi)

Lateness t.: t (Vi) = Te(vi) — ta(vi) with td: deadline (latest possible

finishing time)

Tardiness tr: tr(vi) = max{te(vi) — ta(vi), 0 }

Optil ion Crits

= & * 3, ty (Vi) and flow time: F = 5* Y tp(vi

ax response time (time between process start and output of first valid

esults); Real-time systems: In addition to mean wait times and flow times,

Imisses of deadlines are of special interest: max Lateness = max(t(vi)); Number

fof tasks that miss their Deadline sum(u(vi))

ia: Multi-user systems: Minimization of the mean wait time

; Minimization of the

Strategi

First come first served (FCFS): simple to realize (like FIFO); Suited for uniform
asks: similar processing times, identical priorities, no real-time requi

SW-Performance Metrics: MIPS (million instructions per second, equal to
FLOPS or MACS); Memory (different access latencies: Cache, SRAM, DRAM)

ICommunication Metrics: Max. Bit Rate (channel specific upper bound data
ransfer rate); Average Bit Rate; directly impacts processing performance

Other Metrics:

Power dissipation: insignificant for A>0,1um, in future dominant because of
leakage currents
- . — 2
P = Pyar + Psnore + Peaps Peop = feCioaaVaa
Pesign-for-Test: BIST (build in self test); LSSD (Level sensitive scan design)

[pevelopment time: can be significantly reduced by usage of standard,
programmable components

[lime to market: The earlier a product is available on the market, the bigger are
ts business volume and profit margins; ,,6 months delay in product entry may
esult in 33% less profit over a period of 5 years”

Maximum Operator Latency: functional unit of type rk with latency delay(rk)
(ehediry(r])

Slack: (Positive) slack denotes that fraction of the clock period (zeitdauer)
hich is not utilized (nicht ausgelastet) by a functional unit vk

T=m

oocury): Number of operalors of

slack(T v,)= [delay(r)/ T)- T = delay(,) . type s,

Ex|
2 (occur(y)« slack(T, 1))

avg_slack(T)= =
3 occur(n)
=

avg _slack(T)
T

utilization(T)=

but fluctuation of tWait:
Fhortest job first (SJF): Minimization of mean wait time or flow time, requires
orting of tasks, not preemptive

[Fhortest remaining time next (SRTN): Pre-emptive version of SIF; dynamic
priority assignment; At any time t the task with the min remaining processing
ime is selected from all schedulable tasks; in real time systems only estimation

ound robin (RR): Circular queue with

SlackiBD, +) = 0; slack({160,) = 10ns
avg_slack(80) = 20ns /6 = 3.3ns

7. VHDL/SystemC Praktikum

BystemC based on C++ with Extensions: SystemC class library to implement
Concurrency, Ca Time mar) and Simulation kernel

BStructure of a SystemC Module: Header File (module.h): contains: Module
Keclaration (Ports, Sockets; Member variables); Signals; Sub-modules
Ymplementation File (module.cpp): Implementation/definition: Member
unctions; Processes; (Constructor)

IConnecting Modules with Signals: top fevel of mods!

Member Functions and Processes: can s masie_2
ead / write signals, ports, member - L
variables; call interface functions of i _
ockets via: signal_or_port.read();) L

B el

Processes:

Enable modelling concurrency (Communicate via signals or events, Processes
kannot be called directly by other processes / member functions = triggered
by sensitivity (event, signal));

Are special member functions (No return values and no parameters)
Have to be registered with the simulation kernel in the module constructor

2 types of processes: SC_METHOD (On activation, process is infinitely fast
executed from beginning to end) and SC_THREAD (On activation, commands
bre executed infinitely fast until next wait statement, on next activation until
kubsequent wait)

Evaluate-update scheme to simulate concurrency: Phasel (Process Execution,
PE): all processes with change on a sensitive signal / event are executed
sequence undefined); Phase2 (Signal Assignment, SA): assignment of modified
ignals; Repeat PE and SA phases until system is stable, then increase
kimulation time; The sequence PE/SA is called “delta cycle” (no simulation time
s consumed)

[ransaction: call of a function of an interface

L Level (TLM): Targets: Reduce modelling effort; Allow for

easier model adaptability; Increase simulation speed; Enable efficient
brchitecture exploration; Use models: SW development on virtual prototype,
rchitecture exploration, HW verification, Modeling styles: loosely timed,

50 100
Clock period T=80 ns

f - A
150
\Ij.\

| - Latency L=5

Pipelining: with P equal stages, put in registers to rise clock

ix time interval Q, after which the Resaurce

context is switched at the latest; Tasks =l “1“
re processed in turn; Advantage: ‘
bvoids ,starvation” of tasks; x TN P
Drawback: Frequently long wait times T + 'n "7 :, K : E‘n

6.

Design parameter estimation allows to bound relevant system aspects prior to
ystem implementation to support design decisions and system optimization.

Design Estimation Techniques

Estimation Metrics:

[Quality and Costs: HW (test, manufacture), SW (memory, development),
Performance (throughput, clock cycles), Communitcation (transfer rate), Power |
[lime (Design, Time-to-market)

Foncurrent Scheduling of iterations: simultaneous processing of tasks belongingf-stimation accuracy: Acc = |E(D) — M(D)|; E(D) is the estimated and M(D)

_ E@-MO)]|

he measured values for a design D. Relative error: RE = M)

neighbour or the one with least degradation of result; Loops are prevented by
considering only solutions which haven't been considered before (storing of lasf]
n solutions in TabuFifo); Escapes from local minima; Accepting a new solution
implies; removal of oldest solution from TabufFifo (if TabuFifo is full); Length of
TabuFifo influences effectiveness of method TabuFifo too small: Loops may
occur; too large: Possibly no new neighbours are found which weren’t
considered yet

Not-overlapping Schedules: Tasks
scheduled in the base interval
[0,...,P] do not expand over the
boundaries t = 0 und t = P. Relevant "
for architectures with
synchronization points at interval
boundaries. (here also concurrent)

f-stimation fidelity: Fidelity F is defined as percentile of correctly predicted
kcomparisons between multiple implementations:

Tabu Search - Example

ER EaEaE

EarEnE

Overlapping Schedules: Tasks may
expand beyond interval boundaries,
however, repeat with period P.
(here also concurrent)

Wi 1 E(D)= E(D) A M(D) > M(D), v
2 ! o E(D) < E(D) 1 M(D;) < M(Dy}, v
=3 > 1, 100% 1=\ £0)2E) WD) - MO)
n(n=1) 3 /7 0 else
Accuracy: E1: 1/342/6+2/5=32/30: E2: 1/3+2/6+2/5=32/30
Fidelity: E1: 1/3(1+1+1)=3/3; E2: 1/3(1+0+1)=2/3

IP each for correct Accuracy/Fidelity values
El is better than E2

X Measurement
OE1

(|

Sequential Scheduling of iterations:
All tasks belonging to iteration n
have to be completely finished
before tasks of the subsequent
iteration may be started.

OE2

Design

D2
Vaniants

D3

s e) [oo o o

5. Scheduling

Aim: Determines the execution sequence and start times of tasks between

Fully-static Scheduling: All iterations
of a task are bound to the same
resource (instance). : f

HW-Cost Metrics: Manufacturing (area, SoC— CPU, Mem), Module (Pin Count),
[Test (time on test device), Devel 1t (Team size, C ity, lion share!)

HW-Performance Metrics: Compute performance, Communication band with,

different and onto the same resource under consideration of data
dependencies in the task graph

Classification:

Preemptive scheduling: Possibility to interrupt execution of a task during run
time (to benefit other task) and resume execution on same/different resource;

Cyclo-static with periodicity K: K
subsequent iterations of a task may
be bound to different resources.
The resource of the iteration (K + n)
has to be the same as the resource
of the iteration n.

khroughput, Processing Time/Latency, Clock Rate
Texe = Ninstr =T * CPI

[SW-Cost Metrics: HW (components: CPU, RAM), Development (Teamsize,
[dominant!); Memory Demand (Program and Data Memory)

by Generic Model: Advantage: One compiler sufficient for|
Imultiple CPUs — CPU technology data contain details such as CPI, register set,
SA, etc.; Easy retargeting to different CPU by means of new technology data

et; No need that compiler exists already at design time of CPU; Disadvantage:
Lower accuracy — Technology data is estimated

Seconds
Clock Cycle

Instructions
Program

Clock cycles
Instruction

Tex =

Instruction Count Estimation:

CFG

DFG
1C(P 1)= 3 100, 1)

o

* Consist of sequential tasks,
conditional branches and leops
Estimation via execution
frequency of specific tasks

™ Sum of instructions of all tasks

running on a CPU of type r, op.n ':éf‘ (3,005 freg(v,)

s
* freqis) = 1 F prebis =1
. x freq(S) 1
. x freq(1)+ (N-1) x freq(%) / N § st 2i=1
prosi 21=

xfreq(2)
x freq(3) + (1-p) x freqi2)
x freqid)

oIS = W/ N 2\:“,;33 »

proi2 1= 1p l

IMemory Space: Program memory (Aggregate instructions of all tasks times
operand size of the respective CPU)

IC{P,.F}}XHIMT size(ry)

bpproximately timed, Support a range of different abstractions, Interaction via
blocking or non-blocking transactions, Different number of transaction phases,
PDefinition of a generic payload (extensible), Important standard for IP
ntellectual Property) exchange, Mainly targeted at memory mapped bus

initiator socket target socket

initiator |~

Initiator alls !
b_transporti) :

targat

Declar

Target implements
b_transpont()

IVHDL:

Entity: defines a ,Black Box” with information: Model Name and Ports (inputs /
butputs); No information concerning function and its implementation ->
JArchitecture; more than one architecture design per Entity possible but an
prchitecture belongs to exactly one Entity (allocate by Configuration)

Functionality Approaches: Modelling behaviour (through processes and
koncurrent signal assignments); Modelling the structure (through instantiation
of given components and their interconnection)

Inherent parallelism of HW: All statements in the statements section of the
brchitecture are CONCURRENT ! The sequence of the statements is irrelevant!
Inherent parallelism of HW)

Processes: Complex functionalities cannot be modeled using only concurrent
ignal assignments -> Process: Interface between concurrent and sequential

Inodeling; Acts like one concurrent statement, however, process statements
re executed sequentially (if-else structure)

IConcurrency - Delta Cycles: Evaluate-Update scheme: 1. PA (Process Activation
phase): all activated processes are executed, sequence undefined; 2. SA (Signal
Issignment phase): signals get newly assigned values; If SA activates further
processes, repetition of PA-SA Sequence until stable state is reached

Wh

If-Else, C:
Modeling Synchronous Circuits: Assigned signals will become registers in HW;
Kpply event-Attribute only to clock!

[T'ypical Modeling Errors: More than one
pssignments to the same signal in concurrent
ignal assignment/process; Missing signal

when ial logic =
lUndesired Latch for Signal s2

Fa="1" THEN; s1 <= b OR c; s2 <= b AND c; ELSE s1
=b XOR ¢;

['he executable model is machine readable, can be simulated, and is intended
foadvance the understanding of the system’s behavior. In addition, the model

