
4ei*
* kann Spuren von Katzen enthalten
 nicht für Humorallergiker geeignet
 alle Angaben ohne Gewehr

Information
Retrieval in High
Dimensional Data

1. Basics

Observation Matrix: X ⊂ Rpxn with p-dimensional random variable
and n obeservations (i: variable, j: observation)
Expected Value µ = E[X] ∈ Rp

Estimate mean: µ̂i = 1
n

∑n
j=1 xij (Sum row wise!)

Variance Σ = V ar(X) = E[(X − µ)(X − µ)T] ∈ Rpxp

Σ is symmetric and positive semidefinite: xTΣx ≥ 0 ∀x or Σ ≥ 0
Centered Observation Matrix: X̂ij = xij − µ̂i Transpose Matrix:

(XY)T = Y TXT

1.1. Random Variables
Probability: Pr(X ∈ X) =

´
X pX (x)dx =

∑
{i|xi∈X} pi

Marginal Density: pX (x) =
´
Rk pX,Y (x, y)dy

Conditional Density: pY |X=x(y) =
pX,Y (x,y

pX (x
Expectation Value:

E[X] =
´
Rp xpX (x)dx = µX

(Co)Variance: V ar[X] = E[(X − µX)(X − µX)T

2. Statistical Decision Making

2.1. Loss Function

• Quadratic Loss Function: L(Y, f(X) = (Y − f(X))2

• Minimize Expected Prediction Error: EPE(f) = E[L(Y, f(X)]

• If using quadratic loss function, conditional mean is best

• If using absolute loss, conditional median is best

2.2. Decision Making

• Global Methods: Find best explicit global function f̂
f̂ = argminf∈FEPE(f), incorporate all points
reduce complexity by learning parametrize decision function

• Local Methods: Find best local value ĉ of given realization x
ĉ = argminc∈R EY |X=x L(Y, c), only samples in region of
interest

2.3. Curse of Dimensionality
With increasing dimension p:

• Noise increases (accumulates over dimensions

• Number of observations for same accuracy increases exponentially

• Empty Space Phenomenon: High dimensional spaces are sparse

• Bigger space = more samples in the tail of the distribution

• Samples are equidistant to each other

Therefore, difficult to estimate underlying distribution

2.4. Data Preparation
• Nominal Categories - No ordering, Ordinal Categories: Ordering

• Num to Cat: Discretization, Cat to Num: Binarization

• Bag of Words: Frequent and Distinct = strong Weight

• Frequent: Term Frequency

• Distinct: Inverse Document Frequency

• Text Prep: Remove HTML, lower case, Remove punctuation/num-
bers/common words, split into words

3. Logistic Regression

3.1. Binary Classification
Input Data: X ∈ Rp, Output Variables: Y ∈ {−1,+1}
L0,1(Y, f(X) = 1 if Y · sign(f(X)) ≤ 0, numerically infeasible

3.2. Convexity

in convex set C ⊂ R, f is convex, if tf(x2 + (1 − t)f(x1 ≤
f(tx2 + (1 − t)x1 ∀x1, x2 ∈ C, t ∈ [0, 1]

if f, g convex, then: max(f, g), f + g, g ◦ h (if g non-decreasing) are
convex. Local minimum of strictly convex is global minimum and unique

3.3. Logistic Regression

Choose f(x) = wT x + b and log-loss l(t) = log(1 + e−t):

min
w∈Rn,b∈R

1
n

∑n
i=1 log(1 + exp(−yi(w

T xi + b)))

P (Y = y|x) = 1

1+exp(−y(wT x+b))
, Prob. that y is correct

Find w∗, b∗ by gradient descent
Classify new sample: sign(w∗T xnew + b∗)

3.4. Overfitting
For linearly separable non empty training sets, the loss function has no
global minimum in Rp+1. If there is a dividing hyperplane (=lin. sep-
arable), we can scale its parameters and increase the value of the loss
function. Dies does not need to be the best dividing hyperplane! Fixed
by regularizer, e.g. adding λ||w||2 + b2

3.5. Alternative Approach (Statistics)

Linear Model: a = w0 + w1x1 + ... + wnxm = wT x

Probability: σ(a) = 1
1+e−a D = {(xi, zi)}

Find wMLE = argmax
w

P (D|w) xi ∈ Rd, zi ∈ {0, 1}

P (D|w) =
n∏

i=1
σ(wT xi)

zi (1 − σ(wT xi)
1−zi

L(w = −log(P (D|w), ∇wL(w) = X(σ(XT w) − z)
(Requires Hessian Matrix, which is positive semi-definite)
Results are identical up to the factor 1/n

4. Kernels

Kernels replace the standard inner products with some function that is a
suitable generalization of an inner product to allow for nonlinear behavior.

A positive semidefinite Kernel is a function κ : Rp× → R so that for
all sets X = {x1, ·,xn} the Gram-Matrix Kij = κ(xi,xj) is

symmetric and positive semi definite

• Symmetric: κ(xi,xj) = κ(xj,xi) ∀i, j

• positive semi definite: xTKx ≥ 0 ∀x or all eigenvalues ≥ 0

4.1. Common Kernels and Rules

• Linear kernel: κ(x,y = xTy + c, c ≥ 0

• Polynomial Kernel κ(x,y = (axTy + c)d, a, c, d ≥ 0

• Gaussian Kernel κ(x,y = exp(− ||x−y||2

2σ2

• If κ1, κ2 are Kernels and c ≥ 0, then cκ1, c+ κ1, κ1 + κ2 and
κ1 · κ2 are kernels as well

5. Principal Component Analysis

Unsupervised Learning : Structure unlabeled data. Here: reduce dimen-
sion of input without loosing to much information

Goal: Find Uk ∈ Rpxk that minimizes
n∑

i=1
||xi − UkUT

k xi||22

5.1. PCA - Singular Value Decomposition
Important: X: centered observation matrix SVD returns: X =
XDV T with singular values d1 ≥ d2 ≥ ... ≥ dn on the diago-
nal of D
Uk satisfies goal with diagonal covariance matrix S = UT

k X
sij : j-th score of the i-th principal component. S: score matrix, U: load-
ings matrix
To reduced variables: S = DkV T

k , new sample: snew = UT
k snew

Cheaper than using UT
k X (nk operations instead (2p − 1)nk

Dimensions:
X ∈ Rm×n, U ∈ Rm×m, D ∈ Rm×n, V T ∈ Rn×n,
Uk ∈ Rk×n, Xk ∈ Rk×n, m: Dimension variable, n: samples

The eigenvectors of XaX
T
a are the loadings of Xa only if Xa is centered

5.2. Statistical Interpretation

Goal: Find Y = UT X with UT U = I and declining variance of the
components

5.3. Autoencoders
Autoencoder: Form of neural networks, where input is first mapped to a
lower dimension k by f and then back to input g: g ◦ f(xi) ≈ xi. If f

and g are linear and represented by V ∈ Rk×p and W ∈ Rp×k then
g ◦ f(xi) = WV xi and the error is measuered by the sum of squared

distances
∑n

i=1 ||xi − XV xi||2, then the first k singular vectors of
X are optimal.
WV has at most rank k
If f , g not linear: only approximation possible

6. Kernel-PCA

6.1. Linear PCA by inner products

If K = XTX the inner product matrix and X = UT the SVD of X,
we can write K = VΣTΣVT with ΣTΣ being diagonal. This is the
eigenvalue decomposition of X
Let Vk and Σk = diag(σ1, · · ·σk the first k eigenvectors and eigen-
values

Therefore: UT
k = Σ−1

k
VT

k XT and for a new sample y:

UT
k y = Σ−1

k
VT

k XTy = Σ−1
k

VT
k

[
xT
1 y · · ·xT

n y
]T

This only requieres the inner product xT
n y = ky

If X is not centered, we can center K without centering X:

K̃ = HKH with H = (In. 1
n
1n1

T
n)

For new samples, we have to replace ỹ = y − 1
n
X1n and X̃ = XH

UT
k (ỹ) = Σ−1

k
VT

k k̃y , k̃y = Hky− 1
n
HK1n

6.2. Transition to Kernel PCA

Instead of replacing the inner product xTy by ⟨ϕ(x), ϕ(y)⟩, we substi-

tute xTy → κ(x,y):

knew =
[
kappa(x1,y) · · · kappa(xn,y)

]T
knew
cent = Hknew

cent − 1
n
HK1n

Kernel Principal Component Analysis

1. for training set X =
[
x1 · · · xn

]
, x1 ∈ Rp

2. Find suitable Kernel function κ(·) and compute Gram Matrix K

3. Compute centered Gram Matrix: K̃ = HKH with
H = In − 1

n
1n1

T
n

4. Compute Eigenvalue Decomposition: K̃ = VΛVT. Because K
is positive semi-definite and therefore the diagonal entries of Λ are
non-negative, we write Λ = Σ2 = diag(σ2

1 , ·, σ
2
n)

5. Reduced Matrices: Σk = diag(σ1, · · · , σk), ∈ Rk×k and

Vk ∈ Rn×k

6. Reduced Training Data: S = ΣkVT
k

7. For new datapoint y ∈ Rp, compute new components:

snew = Σ−1
k

VT
k knew

cent

knew
cent = Hknew

cent − 1
n
HK1n

knew =
[
kappa(x1,y) · · · kappa(xn,y)

]T

7. Feedforward Neural networks

Minimize any expected loss at the price of training many parameters
Find f ∈ F that minimizes loss. If all functions in F can be described
by a set of k parameters Θ ∈ Rk , then the goal is for N samples:

Θ̂ = arg min
Θ∈Rk

= 1
N

∑
i

L(fΘ(xi))

One layer of a FNN consists of a linear function φW (h) = Wh and a
nonlinear activation function, e.g. the ReLU: σ(t) = max{0, t}:

f : Rp → Rk : σl ◦ φWl
◦ · · · ◦ σ1 ◦ φWi

(X)

With p/k Input/Output dimension and l layers, Deep FNN: l > 3
k depends on loss function (Output of FNN is input of Loss)

7.1. Training FNNs (Backpropagation)

Functions g : Rk → Rl and h : Rl → Rm with g being diff’able at
x and h at y = g(x) with Jacobi matrices Jg(x) and Jh(y) then

h ◦ g : Rk → Rm is diff’able at x with
Jh◦g(x) = Jh(g(x) · Jg(x)

8. Support Vector Machine (Basic Linear SVM)

• Idea: Find hyperplane to divide x, y into two subspaces

• Hyperplane: Hw,b = {x ∈ R|wT x − b = 0}, w normal to H

• Euclidean distance from x to Hw,b: δ(x,Hw,b) = wT x−b
||w||

• Goal: Find yi(w
T xi − b) ≥ 1 ∀i ∈ 1, ..., N

• Optimization Problem: min 1
2
||w||2 that fulfills Goal

8.1. Karush Kuhn Tucker Conditions and Linear SVMs

min
w,b,λ≥0

L(w, b,λ)

L(w, b,λ) = 1
2
||w||2 −

∑
i

λiyi(w
T xi − b) + λi

∇(w,b)L(w, b,λ) =

[
w −

∑
i λiyixi∑

i λiyi

]
w∗ =

∑
i λ∗

i yixi
∑

i λ∗
i yi = 0

LD(λ) =
∑

i λi − 1
2
λT Hλ With hij = yiyxxT

i xj

New convex quadratic opt problem: λ∗ = max
λ

LD(λ)

• Problem is strictly convex, therefore solution is unique

• If λi ̸= 0, then xi is support vector (Lies in or on margin)

• Only works, if classes can be linearly separated

• Else: Kernel/Soft Margin SVM required

• SVM works better when (nearly) separable than LR

• SVM is preferred when using kernels compared to LR

Homepage: www.latex4ei.de – Please report mistakes immediately. from Nico Hertel, Seth Siriya – Mail: mail@nicohertel.de Last revised: July 15, 2018 1/4

www.latex4ei.de
mailto:mail@nicohertel.de

9. Decision Making

• Decision making is about mapping an input vector to an output value.

• Binary decision making can be visualised via a joint pdf of X and
Y, where Y takes on -1 or 1 and X is a continuous random variable
whose distribution changes conditioned on Y.

• Loss is a positive, real measure of the deviation between a target and
an output from a decision function.

• Expected prediction error as a function of f is formulated by the ex-
pectation of the loss function, whose values change depending on the
decision function f: EPE(f) = E[L(Y, f(X))].

• The aim of global methods is to find the best global decision function
f out of class F that minimises the expected prediction error.

• The aim of local methods is to find the best output which minimizes
the expectation of loss on the distribution of Y conditioned on known
X

• We can obtain expected prediction error and expected loss due to the
assumption that we know the joint pdf of X and Y, i.e. the stochastic
behaviour of the system.

• For local methods with loss specified as the squared loss, expected
loss is found to be the conditional expectation of of Y on the distri-
bution of Y conditioned on X = x: f(X) = EY |X=x[Y].

• The problem with local methods is most of the time X is a contin-
uous random variable and thus values here X=x are impossible, and
so we take the k-nearest neighbours to x as approximations of x,
thus giving us a set of samples representing the distribution of values
X=x such that local method for finding output can now be applied
to these samples.

10. Curse of Dimensionality

• Most of the time it is desired that the dimensionality of samples are
decreased due to various problems involved with working in high di-
mensions.

• As the number of dimensions increases, the number of samples re-
quired to obtain an accurate representation of the probability distri-
bution also increases a lot.

• The empty space theorem says that as dimensionality increases, sam-
ples tend to be located at the tail end of their distributions.

• As the number of dimensions increases, the distance between a point
and any possible samples becomes more and more equidistant.

• For a random vector X ∈ Rp, the probability of at least one Xi
being further than β away from the center: (For large p this becomes
1)

Pr(||X||22 ≥ β) = 1 − Pr(X2
1 < β)p.

11. Convex Functions

Definition Convexity: C ⊂ Rn a convex set, i.e for any pair
x1, x2 ∈ C the point tx2 + (1 − t)x1 ∈ C ∀t ∈ [0, 1]. A

function is called convex if ∀x1, x2 ∈ C, t ∈ [0, 1]:
tf(x2) + (1 − t)f(x1) ≥ f(tx2 + (1 − t)x1)

• By definition, a function is convex if a line can be drawn between any
two points in a function, and all vertical values of the line are greater
than or equal to all vertical values of the function between the same
two points.

• A function is also convex if its second derivative is positive, or equiv-
alently for vector inputs its Hessian matrix contains all non-negative
eigenvalues.

• Several operations between convex functions also result in another
convex function, including the max between two convex functions:

if f, g convex, then: max(f, g), f + g, g ◦ h (if g non-decreasing)
are convex. Local minimum of strictly convex is global minimum and

unique

12. Logistic Regression

12.1. Formulation via Optimization
• The aim of logistic regression to perform binary classification on a

random vector, that is, map a random vector to either -1 or 1.

• In order to ensure that the outputs in logistic regression are either -1
or 1, the output in logistic regression is taken to be the sign of the
output from a prediction function f which contributes to the decision.

• The loss function in logistic regression is taken to be the number of
misclassifications of a prediction, that is, 1 if the decision from lo-
gistic regression does not match the target, and 0 if it does match.

f(z) =

{
1 if Y · sign(f(x)) ≤ 0

0 otherwise

• It is clear that we must find an appropriate f to complete the decision
function, and thus we define the global method with the misclassifica-

tion loss as the problem we need to solve. 1
n

n∑
i=1

L0,1(yi, f(xi))

• The misclassification loss is extremely difficult to solve due to being
non-continuous and non-convex, and so first we need to approximate
this function as a convex function since they are easy to optimize.

• A convex approximation of misclassification loss is log(1 +
exp(−t)), which when concatenated with an affine function

f(x) = wT x + b is also convex, and can therefore be easily
optimized via minimization.

min
w∈Rn,b∈R

1
n

n∑
i=1

log(1 + exp(−yi(w
T xi + b)))

• Noting that the loss is in negative log-likelihood form, we can con-
vert this to a probability by taking the exponential of likelihood.

Pr(Y = y|x) = 1

1+exp(−y(wT x+b

Gradient-based methods can be used to find affine weights and bias
that optimize 3.3.

12.2. Overfitting on Logistic Regression
• When the samples are linearly separable, there is a constraint that

the target times the affine output is always greater than zero Under
this constraint, no global minimum exists.

If the data is linearly separable, we can find (ws, bs) so that:

yi(w
T
s xi + bs) < 0 ∀i

then the lossfunction has no global minimum in Rp+1

12.2.1. Proof
This is proven by noting that for a global minimum to exist, a point with
small, positive loss exists (3.17) such that all points have losses greater
than or equal to this point (3.16). This has to be satisfied along the
linearly seperable constraint (3.18). If this constraint is always satisfied,
then (3.19) is always positive, which when subbed into (3.15) and scaling
weights and bias to infinity we find that the loss approaches zero (3.21),
thus violating the global minimum condition (3.18). This is prevented via
regularization (3.23).

13. Principal Component Analysis
PCA represents the data projected onto a lower-dimensional plane which
captures most of the variance of the dataset.

13.1. Geometric Interpretation
• Imagining that x is a vector in p dimensions, and Uk describes a

lower dimensional subspace, then the coordinates of x projected onto
Uk is found by first obtaining the scores of x along Uk and then
taking the linear combination of these scores and the Uk vectors:

πU (x) = UkUT
k x, Uk ∈ Rp×k

• We want to find a Uk that captures most of the variance in the
dataset, which is equivalent to finding a hyperplane where the
difference between the original data points and their projections are
minimized, thus forming our problem for optimization.

J(Uk) =
n∑

i=1
||xi − UkUT

k xi||22

• The dataset can be represented as the dot product of an orthonor-
mal matrix, a diagonal matrix and another orthonormal matrix via
singular value decomposition: X = UDV T .

The first k columns of the first orthonormal matrix via SVD Uk
minimizes the the difference between data points and their

projections, and the corresponding covariance matrix of the scores is
diagonal (= features are uncorrelated).

13.2. Proof
• Theorem 4.1 is proved by first reframing the minimization problem

(4.2) into a maximization problem, reframing this again into a prob-
lem involving the trace of a rank k projection matrix, then noting that
the maximum value along the diagonals is 1 (4.5) of which subbing
in Uk achieves due to its resulting in a identity matrix. We can show
that the scores are uncorrelated by showing that the dot product be-
tween the scores and its transpose scaled by 1/n is a diagonal matrix
using the SVD. (4.6)

• If we have the product between two matrices where the first matrix
is is comprised of a diagonal matrix as well as a zero matrix, then we
can get rid of the zero columns in the first matrix and also get rid of
the corresponding rows in the left matrix.

• A computationally inexpensive way of obtaining the scores using the
singular values and right singular vector can be derived by substiuting
the SVD into the formula for the calculating the scores. (4.7)

13.3. Statistical Interpretation
The idea behind the statistical interpretation is that covariance matrices
are symmetric positive semidefinite, and therefore there exists some matrix
U which can diagonalize it (clearly illustrated using the eigenvalue decom-
position). Thus we can push U inside the covariance formula (4.8) to show
that the scores with uncorrelated dimensions are obtained by projecting X
onto U. (4.9)

D = UT var(X)U = E[UT (x − µx)(X − µx)T U] =

E[(UT X − UT µx)(UT X − UT µx)T] =

E[(Y − µy)(Y − µy)
T = var(Y)

13.4. Error Model Interpretation
• The error model interpretation is that the samples X is obtained via

the addition between a signal matrix L and a noise matrix N , where
L is lying on a lower dimensional subspace than X, and the goal is
to try and find L. Theorem 4.2

• Setting L equal to the SVD (p dimensions with k) minimizes the
Frobenius norm of the difference between X and L given that the
dimension k of the subspace which L lies in is known beforehand.

13.5. Relation to Autoencoders
• Autoencoders map an input to low dimensional space using a function

f , which is then mapped back to a higher dimensional space using a
function g and can approximate the input g ◦ f(xi) ≈ xi

• Letting f and g be linear mappings represented by matrices, the
reconstruction error J(W,V) =

∑n
i=1 ||xi − WV xi||2 is

minimised by setting f as the transpose of Uk and g as Uk .

Let Uk be the first k left singular vectors of observation matrix

X, the V = UT
k and W = Uk minimize the reconstruction error

of the linear autoencoder.

• This is proven by noting that in Theorem 4.2 which has a problem
of the same form, the error is minimized using the projections of
the points on the subspace of interest, thus leading to f and g as
the transpose of Uk and Uk itself respectively as they cause this
projection.

14. Feed forward Neural Networks

14.1. Definitions and Motivation
The power behind an FNN is its ability to minimize any kind of expected
prediction error, that is, find model parameters that minimize expected loss
(5.1). Feed forward neural networks are concatenations of linear functions
(5.2) with activation functions (e.g. 5.3), which can be denoted in vector
form. This results in the generalized form of an FNN. (5.5)

Given function class F described by set of k parameters Θ ∈ R< k:
Solve: Θ̂ = argmin

Θ∈Rk = 1
N

∑
i L(fΘ(xi)) (5.1)

φW : Rp → Rm, φW(h) = Wh (5.2)
σ(t) = max{0, t} (ReLU, 5.3)

f : Rp → Rk : σl ◦ φWl
◦ · · · ◦ σ1 ◦ φW1

(X)(5.5)

14.2. Training FNN
The gradients can be calculated via chain rule through each subsequent
layer, or in this case due to vectors via the Jacobian. From (5.5) the key
stages include matrix multiplication (5.2) and nonlinear activation (5.3).
The corresponding Jacobians w.r.t. inputs in each stage is seen in (5.6)
and (5.7) respectively. However, for the Jacobian of matrix multiplication
w.r.t weights, the weights need to be reshaped into a vector (5.9) which
will then allow us to formulate the Jacobian (5.10). Then the gradients
w.r.t loss (5.11) is simply (5.31a). The gradient can then be used to up-
date the weights for the next time step, making sure to apply an inverse
reshaping of the gradient vector into a matrix (5.14).

JWg(x) = W · Jg(x) (5.6)

j(ij),σ(x) =

{
σ′(xi) if i = j

0 else
(5.7)

Jmult(x) = diag(xT) ∈ Rm×mn (5.10), doesn’t depent on
With hj = σj ◦ φWj

◦ · · · ◦ σ1 ◦ φW1
(x) the j-th output

We get for the output-layer (L):
∂

∂Wl
F = JL(hl) · Jσl

(Wlhl−1) · Jmult(hl−1)

∂
∂Wj

F = JL(hl) · Jσl
(Wlhl−1) ·

WlJσl−1
(Wl−1hl−2) · Jl−1 · · ·Jmult(hl−1) for the j-th

layer

Homepage: www.latex4ei.de – Please report mistakes immediately. from Nico Hertel, Seth Siriya – Mail: mail@nicohertel.de Last revised: July 15, 2018 2/4

www.latex4ei.de
mailto:mail@nicohertel.de

15. Kernel Trick

• A kernel is a function that maps two sets containing real numbers
(representing a sample) to a single scalar, such that for all possible
sets of samples (contained in a data matrix with columns correspond-
ing to samples) the Gram-Matrix (6.1) is symmetric and positive
semidefinite.

A positive semidefinite Kernel is a function κ : Rp× → R so
that for all sets X = {x1, ·,xn} the Gram-Matrix

Kij = κ(xi,xj) is symmetric and positive semi definite

• We can determine whether a particular function is a kernel by testing
for violations of symmetry or positive semidefiniteness. Symmetry can
easily be tested by substituting named variables into the kernel, then
flipping around the variables and seeing whether the kernel expression
is the same.

• Positive semidefiniteness can be tested as violated by definition, or
if any diagonal values are ever negative. Furthermore, if the de-
terminant of a matrix is negative it is definitely not psd (since psd
eigenvalues are nonnegative and the determinant is the product of
the eigenvalues), but we cannot say anything if the determinant is
positive.

16. Kernel PCA

16.1. Linear PCA with Inner Products
• Scores of the input data can be calculated using singular values and

the right eigenvector (4.7), which we can obtain using the eigenvalue
decomposition of the Gram-Matrix (7.2) and therefore giving us a
way to calculate linear PCA scores using the inner product. If we
forgot to center the data, use the centred Gram-Matrix instead (7.8).

• If the input data has not been centred beforehand, we can find the
Gram-Matrix for the centred data by noting how input data is usually
centred (7.6), factoring out the input matrix (7.7) and then using
inner product to compute the Gram-Matrix corresponding to centred
input. (7.8)

• Scores for new observations are usually calculated by projecting them
onto Uk , but if we want to reformulate this to be in terms of the
singular value and right singular vectors we can isolate U in the SVD
and retain only k columns (7.4a) to arrive at the formulation. (7.4)

• If we want to calculate scores for new observations considering cen-
tering, we take the formula for raw new observations (7.4), replace
the input matrix with a centred input matrix and the observation with
an approximated centred observation, resulting in a nice formula in-
volving the Gram-Matrix. (7.9)

EVD of Gram Matrix (7.2): K = VΣTΣVT

Centered Gram Matrix (7.8): K̃ = HKH with

H = (In. 1
n
1n1

T
n)

Computing scores for new sample y: UT
k (ỹ) = Σ−1

k
VT

k k̃y ,

k̃y = Hky− 1
n
HK1n

16.2. Transition to Kernel PCA
• Kernel PCA requires us to first compute the Gram-Matrix via the ker-

nel (6.1). This can then be substituted for the Gram-Matrix via inner
product at various places, such as during centering (7.8) and when
performing eigenvalue decomposition (7.2) to calculate matrices for
scores (4.7).

• The scores for new observations via Kernel PCA is based off the Linear
PCA version (7.4), and can be obtained by replacing the linear ob-
servation inner products with the kernel observation inner products
(as well as ensuring that singular values and right singular vectors
obtained from eigenvector decomposition of Gram-Matrix via kernel
(7.2)).

• Similarly, when considering centering, note the Linear PCA version
of scores which consider centering (7.9) and replace the linear Gram-
Matrix with the kernel Gram-Matrix as well as the linear observation
inner products with the kernel observation inner products. (7.12)

17. Support Vector Machines

17.1. Geometry
For some vector w, an affine hyperplane is described as the set of
points x that can be projected onto w and then shifted by some
constant b to equal zero. (8.1)

•• The vector w is normal to the hyperplane (8.1) since a vector of any
direction in the hyperplane projected onto w has a magnitude of zero.
(8.2)

• The signed distance from any point to a hyperplane is defined as in
(8.3), and can be interpreted as the distance from the hyperplane to
the point x. It is formulated by first projecting x onto w and then
centering the number line at b to obtain the signed value of x in the
decision perspective (denote this as the decision distance). Then this
value is divided by the magnitude of w to obtain the signed distance.
Note that -b denotes the decision distance to the origin, and the
magnitude of w is a scaling factor used to shift between the decision
distance and signed distance.

Hyperplane:Hw,b = {x ∈ R|wT x − b = 0} (8.1)

w is normal to H: wT (x1 − x2) = 0 (8.2)

Signed Distance: δ(x,Hw,b) = wT x−b
||w|| (8.3)

Margin:H+ = {x ∈ R|wT x − b = 1}
H− = {x ∈ R|wT x − b = −1} (8.8-9)

• The decision perspective can be imagined as the perspective where
classification decisions are made, all depending on the decision dis-
tance.

• The positive margin is defined as the hyperplane with a decision dis-
tance of 1 (8.8), and the negative margin is defined as the hyperplane
with a decision distance of -1 (8.9).

17.2. Basic Linear SVM
• The aim of Linear SVM is to linearly separate data using the margins

of the hyperplanes, such that all positively labelled data is bounded
by the positive margin and all negatively labelled data is bounded by
the negative margin. In other words, all positively labelled data has
a decision distance greater than or equal to 1, and all negatively la-
belled data has a decision distance less than or equal to -1, resulting
in a separation constraint for w and b. (8.12)

• We define the best w and b as the ones that have the widest margin,
i.e. the widest distance between the hyperplanes. This width his cal-
culated by the sum of the signed distance from the positive margin
to the hyperplane and the signed distance from the hyperplane to the
negative margin (8.13), which we can then maximize subject to our
separation constraint (8.12).

• Flipping around the numerator and denominator of the width, this
becomes a minimization problem (8.14).

Conditions: wTxi − b ≥ +1 for yi = 1 and

wTxi − b ≥ −1 for yi = −1

Compact: yi · (wTxi − b) ≥ 1 ∀i (8.12) Minimization:

min
w

1
2
||w||22 s.t. yi(w

Txi − b) ≥ 1 ∀i

17.3. KKT and Lagrangian Duality
The Karush-Kuhn Tucker conditions says that a minimisation prob-
lem with a set of equality and inequality constraints (8.15) can be
reformulated as a Lagrangian primal (8.16) with some KKT condi-
tions (Theorem 8.2), such that for convex objective functions with
a convex feasible region (like that defined 8.14) minimising the pri-
mal (8.16) is equivalent to minimising the original problem (8.15).

• For a optimization problem with E and I as equality and
inequality constraints (8.15):

min
z∈Rn

f(z) s.t. ci(z) = 0 ∀i ∈ E and s.t. cj(z) ≥ 0 ∀j ∈ I

Lagrange Function (8.16): L(z, λ) = f(z)−
∑

i∈I
⋃

E
λici(z)

Karush-Kuhn-Tucker Conditions
For z∗ as a solution to 8.15, there exists a larange multiplier λ∗

such that:

– ∆zL(z∗, λ∗) = 0

– ci(z
∗) = 0 ∀i ∈ E

– ci(z
∗) ≥ 0 ∀i ∈ I

– λ∗
i ≥ 0 ∀i ∈ I

– λ∗
i ci(z

∗) = 0 ∀i ∈ I
⋃

E

• The convex primal function (8.16) can then be reformulated as a
concave dual function (8.22) by taking the infimum of the primal
function. The infimum is the set of points along which the function
is minimized w.r.t. the non-Lagrangian multiplier variables. Then by
maximizing the primal subject to its constraints (8.22a) we obtain a
lower bound for the solution to the primal (weak duality) or when
some conditions are satisfied (such as in SVM) this coincides with
the solution to the primal (strong duality).

17.4. Linear SVM via Lagrangian Duality
• SVM via Lagrangian duality follows the process specified above. The

original problem is as in (8.14), the Lagrangian primal is as in (8.23 to
8.25) and the KKT conditions are as in (8.26 to 8.29).

Problem: min
w,b,λ≥0

L(w, b,λ)

L(w, b,λ) = 1
2
||w||2 −

∑
i

λiyi(w
T xi − b) + λi

∇(w,b)L(w, b,λ) =

[
w −

∑
i λiyixi∑

i λiyi

]
KKT Conditions:

w∗ −
∑

i λ∗
i yixi = 0,

∑
i λ∗

i yi = 0

λ∗
i (yi(w

∗T xi − b∗) − 1 = 0
Returns:

min
w,b,λ≥0

L(w, b,λ) = LD(λ) =∑
i

λi − 1
2

∑
i,j

iλjyiyjx
T
i xj s.t. λi ≥ 0,

∑
i λiyi = 0

• Then the dual function needs to be calculated by taking the infimum
of 8.25, which is accomplished by substituting the gradients w.r.t w
and b (8.26) inside, resulting in the dual function (8.30a).

• Maximising this function w.r.t. its constraints is then the dual prob-
lem for SVM. (8.30)

18. Useful Facts
The matrix resulting from the dot product of between an Rnxp matrix
and Rpxn has at most a rank of p.

Homepage: www.latex4ei.de – Please report mistakes immediately. from Nico Hertel, Seth Siriya – Mail: mail@nicohertel.de Last revised: July 15, 2018 3/4

www.latex4ei.de
mailto:mail@nicohertel.de

19. Homework and Assignments

Given a prediction table, eg:

pX (X1, X2) X2 = 0 X2 = 1

X1 = 0 pX (0, 0) pX (0, 1)

X2 = 1 pX (1, 0) pX (1, 1)

Calculate Covariance Matrix from Table

1. Calculate Means for X1 and X2: µ1, µ2

2. Create X-Matrix, e.g.:

[
0 1 0 1

0 0 1 1

]

3. Create p-Matrix:

pX (0, 0) 0 0 0

0 pX (1, 0) 0 0

0 0 pX (0, 1) 0

0 0 0 pX (1, 1)

4. Calculate Covariance: Cov = XpXT

19.1. Classification Analysis
19.1.1. ROC Curve
The ROC curve is a graphical plot that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is varied. It
shows:

• The relationship between sensitivity and specificity. For example, a
decrease in sensitivity results in an increase in specificity.

• Test accuracy; the closer the graph is to the top and left-hand bor-
ders, the more accurate the test. Likewise, the closer the graph to
the diagonal, the less accurate the test. A perfect test would go
straight from zero up the the top-left corner and then straight across
the horizontal.

• The likelihood ratio; given by the derivative at any particular cutpoint.

The Area under the Curve (AUC) is the integral of the ROC Curve and
gives a measure how good the classifier is. An area under the ROC curve
of 0.8, for example, means that a randomly selected case from the group
with the target equals 1 has a score larger than that for a randomly chosen
case from the group with the target equals 0 in 80% of the time. When
a classifier cannot distinguish between the two groups, the area will be
equal to 0.5 (the ROC curve will coincide with the diagonal). When there
is a perfect separation of the two groups, i.e., no overlapping of the distri-
butions, the area under the ROC curve reaches to 1 (the ROC curve will
reach the upper left corner of the plot).

19.2. Curse of Dimensionality
• The angular distance between 2 randomly sampled vectors increases

with dimension d of the sample space.

• Convergence to π
2

implies that two randomly sampled vectors are
orthogonal to each other in d-dimensional apsce for d ≫ n.

• Convergence to π
2

also implies that most samples are concentrated

in the ’corners’ of the d-dimensional cube [−1, 1]d, i.e. in high
dimension, the corners occupy most of the space.

• This convergence also means that 2 randomly sampled vectors are
increasingly equidistant (in termas of angular distance) from their
respective nearest neighbors in high dimensional space.

• Because the samples are increasingly equidistant from each other,
this means that distance-based classifiers (e.g. k-Nearest Neighbors)
cannot be used on such data in high-dimensional space.

• Increasing the sample size n decreases the average angular distance
between neighbouring vectors in a d-dimensional feature space. The
rate of decrease, however, decreases with increasing n.

19.3. Logistic Regression
• With big datasets, standard gradient descent could lead to Memory

Error

• Use stochastic gradient descent instead: Train over epochs instead:

• Each epoch, the training set is divided randomly into equal size sub-
sets (=minibatch). Then the gradient of each subset is calculated
and applied only to the samples in the subset

• A epoch is finished when the gradient step was performed on each
subset

19.4. Principal Component Analysis
Removing the first n columns from Uk can have different effects on clas-
sification:

• Decreased Error Rate: This may be because even though the first n
components capture more variance in the samples, perhaps the other
components are better at separating samples by labels, allowing KNN
to correctly classify samples (Subset 1 in top plot and second plot)

• No Effect on Error Rate: This may be because the first three principal
components are as good at separating samples by labels compared to
other principal components (Subsets 2+3 in top plot and third plot)

• Increase Error Rate: This may be because the first three principal
components are better at separating samples by labels compared to
the other principal components (Subset 4 top plot and bottom plot)

19.4.1. How to choose k?

Assuming that X ∈ Rp×N is the centered data matrix and P =
UkU

⊤
k is the projector onto the k-dimensional principal subspace, the

dimension k is chosen such that the fraction of overall energy contained
in the projection error does not exceed ϵ, i.e.

∥X − PX∥2F
∥X∥2

F

=

∑M
i=1 ∥xi − Pxi∥2∑N

i=1 ∥xi∥2
≤ ϵ,

where ϵ is usually chosen to be between 0.01 and 0.2. Energy is not always
the best way to measure useful information, e.g. when images differ in
brightness (=No use full information)

Homepage: www.latex4ei.de – Please report mistakes immediately. from Nico Hertel, Seth Siriya – Mail: mail@nicohertel.de Last revised: July 15, 2018 4/4

www.latex4ei.de
mailto:mail@nicohertel.de

	Basics
	Random Variables

	Statistical Decision Making
	Loss Function
	Decision Making
	Curse of Dimensionality
	Data Preparation

	Logistic Regression
	Binary Classification
	Convexity
	Logistic Regression
	Overfitting
	Alternative Approach (Statistics)

	Kernels
	Common Kernels and Rules

	Principal Component Analysis
	PCA - Singular Value Decomposition
	Statistical Interpretation
	Autoencoders

	Kernel-PCA
	Linear PCA by inner products
	Transition to Kernel PCA

	Feedforward Neural networks
	Training FNNs (Backpropagation)

	Support Vector Machine (Basic Linear SVM)
	Karush Kuhn Tucker Conditions and Linear SVMs

	Decision Making
	Curse of Dimensionality
	Convex Functions
	Logistic Regression
	Formulation via Optimization
	Overfitting on Logistic Regression
	Proof

	Principal Component Analysis
	Geometric Interpretation
	Proof
	Statistical Interpretation
	Error Model Interpretation
	Relation to Autoencoders

	Feed forward Neural Networks
	Definitions and Motivation
	Training FNN

	Kernel Trick
	Kernel PCA
	Linear PCA with Inner Products
	Transition to Kernel PCA

	Support Vector Machines
	Geometry
	Basic Linear SVM
	KKT and Lagrangian Duality
	Linear SVM via Lagrangian Duality

	Useful Facts
	Homework and Assignments
	Classification Analysis
	ROC Curve

	Curse of Dimensionality
	Logistic Regression
	Principal Component Analysis
	How to choose k?

