1 Kryptologie - Allgemeines

Kryptographie Entwicklung und Anwendung von Verschlüsselungen.
Kryptoanalyse Testen und knacken von Verschlüsselungen.
Steganographie Verbergen von geheimen Botschaften.

1.1 Entwicklung von Algorithmen

Bewährtes Vorgehen: Öffentliche Entwicklung von Algorithmen. Große Zahl von Schlüsseln. Nur Schlüssel geheim.

symmetrisch gleicher Schlüssel für Ver- und Entschlüsselung. asymmetrisch öffentlicher und privater Schlüssel.

1.2 Kryptoanalyse

Brute-Force	Vollständiges Durchsuchen des Schlüsselraum
Ciphertext-only	einer oder mehrere Chiffretexte sind bekannt.
Known-plaintext	Einige Chiffre wie auch Klartext bekannt.
Chosen-plaintext	wählbarer zu verschlüsselnder Text.
Häufigkeitsanalyse	Buchstabenhäufigkeit einer Sprache.

1.3 perfekte Sicherheit

ist gewährleistet, wenn |M|=|C|=|K| die Länge der Nachricht, des Chiffrats und des Schlüssels gleich lang ist und alle Chiffre gleich wahrscheinlich sind.

Kerckhoffs'sches Prinzip: Die Sicherheit eines Kryptosystems darf nicht von der Geheimhaltung des Algorithmus abhängen, sondern nur von der Geheimhaltung des Schlüssels!

Große Konfusion: Jede Chiffrekombination soll gleich wahrscheinlich auftreten

Große Diffusion: Jede kleine Änderung am Klartext oder Schlüssel soll eine große Änderung im Chiffre bewirken. Sicherheit gegen bekannte Angriffe.

2 Mathematische Grundlagen

```
Euklidscher Satz: a=q\cdot n+r a \mod n=a \mod (-n) a+i\cdot n \mod n=a \mod n=r (a_1+a_2) \mod n=(a_1\mod n+a_2\mod n) \mod n (a_1\cdot a_2) \mod n=(a_1\mod n+a_2\mod n) \mod n
```

2.1 größter gemeinsamer Teiler ggT

$$\operatorname{ggT}(a,0) = |a| \quad \operatorname{ggT}(a+i\cdot n,n) = \operatorname{ggT}(a,n)$$

Rekursive Definition: $\operatorname{ggT}(a,n) := \operatorname{ggT}(n,a \mod n)$

Erweiterter Euklidische Algorithmus wichtig!

2.2 Algebraische Systeme

Eine Algebraische Struktur ist eine Menge S mit einer oder mehreren binären Verknüpfungen $*:S\times S\to S$, die bestimmte Axiome erfüllen.

binären Verknüpfungen $st:S$	S imes S o S, die bestimmte Axiome erfülle				
Struktur	Definition				
Halbgruppe $(S, *)$	* ist assoziativ				
Monoid $(S, *)$	Halbgruppe mit neutralem Element e				
Gruppe $(S, *)$	Monoid mit Inversem $^{-1}$				
Abelsche Gruppe $(S, *)$	Gruppe, so dass * kommutativ ist.				
Ring $(S,+,\cdot)$	$(S,+)$ ist abelsche Gruppe, (S,\cdot) ist Halbgruppe und es gilt das Distributivgesetz				
Körper(Field) $(S,+,\cdot)$	Ring, so dass $(S\setminus\{0\},\cdot)$ abelsche Gruppe ist. (Multiplikativ Inverse)				

Kommutativer Ring: abelsche Gruppe $\langle S, \oplus \rangle$ und Monoid $\langle S, \odot \rangle$

2.3 Modulo-Arithmetik

Additiv Inverses -a=n-a Ein Element a hat nur dann ein multiplikativ inverse Element a^{-1} wenn $g\sigma T(a,n)=1$

$$\begin{array}{ll} (a_1+a_2) \mod n = (a_1 \mod n + a_2 \mod n) \mod n \\ (a_1 \cdot a_2) \mod n = (a_1 \mod n \cdot a_2 \mod n) \mod n \\ ??(a_1 \cdot a_2) \mod n = (n-r) \cdot (n-r) \mod n?? \end{array}$$

Der Galois-Körper $GF(p)=\langle \mathbb{Z}_p,+\mod p,\cdot\mod p\rangle$ ist besonders wichtig.

Quadratzahlen: $y = a^x \mod p$

Zu jedem Quadratischen Rest gibt es zwei mögliche Wurzeln n-1

Jacobitest: $J(a,p) = a^{\frac{p-1}{2}} \mod p$ $J(a,p) = 1 \mod p \Rightarrow \mathsf{Quadratischer}$ Rest

 $J(a,p) = -1 \mod p \Rightarrow \mathsf{Quadratischer\ NichtRest\ (keine\ Wurzel)}$

Trick: $a=\pm a^{\frac{p+1}{2}}=\pm (a^2)^{\frac{p+1}{4}}\mod p$ falls $p\mod 4=3$ Falls p nicht Prim, dann Durchlauf für jede Teilprimzahl. Ergebnis miteinander multiplizieren. 2 Teilprimzahlen \Rightarrow 4 Ergebnisse

3 Sicherheitsdienste

- Verbindlichkeit, Nachweisbarkeit (Nicht-Abstreitbarkeit)
- Authentifikation (Identitätsnachweis)
- Integrität (Unverändert?)
- Vertraulichkeit (Geheimhaltung)
- Anonymität
- Berechtigung (Zugangskontrolle)

3.1 OSI Sicherheitsarchitektur

3.2 MAC – Message Authentification Code

64,128 oder 160 bit Wert um Integrität und Authentizität nachweisen. Initwert I, $MAC=g(m,k,g(m,k,\ldots))$

3.3 Einwegfunktionen

Bsp: Multiplikation von zwei großen Primzahlen.

3.4 Krypto-Hash-Funktionen

Nicht bijektive Einwegfunktion um lange Nachrichten auf kurze Hashwerte abzubilden. h(m)

4 Verschlüsselungsverfahren

Verschlüsselung ist eine bijektive Abbildung: $f:M\leftrightarrow C$ m: Klartext, c: Chiffre, k: Schlüssel symmetrisch: c=f(k,m) $m=f^{-1}(k,c)$ Anzahl der Schlüssel bei n Teilnehmern: $|K|=\frac{n(n-1)}{2}$ asymmetrisch: $c=f_e(m)$ $m=f_d(c)$ Sender verschlüsselt mit fremden öffentlichen Schlüssel. Empfänger entschlüsselt mit eigenem privaten Schlüssel.

4.1 Permutationsalgorithmen

Vertauschen der Buchstabenpositionen in einem Text.

4.1.1 Skytala

500 v. Chr. in Sparta: Aufwickeln eines Gürtels auf einen Stock.

4.2 Substitutions-Algorithmen

Jeweils ein Klartextbuchstabe wird durch einen Chiffrebuchstaben ersetzt. Kann oft durch Häufigkeitsanalyse (HA) gebrochen werden.

Ceasarcode	1 Fester Verschiebungsschlüssel	26			
Vigenère-Chiffre	r periodische Schlüssel	26^r			
Verman-Chiffre	binär, einmalig, Strom-Chiffre	∞			
Enigma	3 aus 5 Rotationsscheiben	10^{23}			
Caesar: $C_k = in + k \mod 26$					

Caesar arbeitet auf einer Gruppe $\langle \mathbb{Z}_2 6, + \mod 26 \rangle$

Vigenère: Polyalphabetische Substitution.

Angriff: Wiederholung von Buchstabenfolgen, Primfaktoren ergeben Schlüssellänge, dann HA

Schlüssellänge h für Koinzidenzindex k: $h\approx (k_d-k_r)n/[(n-1)k-k_rn+k_d]$

4.3 Blockchiffre

Blockweise Verschlüsselung. Typische Blocklänge: 64Bit, typische Schlüssellänge 128Bit – 256Bit.

4.4 DES

Digital Encryption Standard 64-Schlüssel bestehend aus 56 Bit + 8 Parity Bits

Permutation und Shifts nötig, damit jedes Schlüsselbit jedes Textbit beeinflussen kann. Insgesamt 28 Bit Schlüsselshifts

F-Funktion: Expansion von 32 Textbits auf 48 durch Bitverdopplung. Aufteilung in 8 mal 6 Bit: S-Funktion: 1. und 6. Bit bestimmen Zeile:

	0000	0001			
00				•	
01				S-Bos ist einzige nichtlinearität	
10					
11					
S-Box hat 6 inputs und 4 outputs					
Verschlüsselung: $R_{16} = L_{15} \otimes F(R_{15}, k_{16})$					

4.4.1 IDEA

4.4.2 AES

Blocklänge: 128Bit; Schlüssellänge: 128Bit - 256Bit. Modulpolynom $M(x)=x^8+x^4+x^3+x+1=\left\{100011011\right\}$ Substitution ist die einzige nichtlineare Operation.

4.4.3 Block-Operations-Modi

- ECB (electronic Codeblock): Jeder Block wird unabhänig verschlüsselt. Sollte nur für Nachrichten < 1 Block verwendet werden.
- CBC (Cipher Block Chaining): Cipherblock wird mit n\u00e4chsten Klartextblock verkettet. (XOR)
- CFB (Cipher Feedback): Selbstsynchronisierende Stromchiffre.
- OFB (Output Feedback): keine Selbssync.
- CTR (Counter):

nonce: number used only once

4.5 Stromchiffre

Zeichenweise Verschlüsselung. z.B. XOR: $c_i=m_i\otimes k \quad m_i=c_i\otimes k$ Kryptoanalyse: Chiffre mit 0-Folge.

5 Asymmetrische Verfahren

5.1 Potenzen in Arithmetik modulo n

$y = a^x$	$\mod p$					
$x \backslash q$	0	1	2	3	4	
1	0	1	2	3	4	
2	0	1	4	4	1	
3	0	1	3	2	4	
4	0	1	1	1	1	

Kleiner Satz von Fermat: $a^{p-1} \mod p = 1$, falls ggT(a, p) = 1 $a = 2 \lor a = 3$ sind Generatorelemente.

Eulersche Φ -Funktion: $\Phi(n) = |\{z \in [1, n-1] \mid \operatorname{ggT}(n, z) = 1\}|$ Es gilt $\Phi(p) = p-1$ und $\Phi(p \cdot q) = (p-1)(q-1)$ für $p \neq q$ Euler's Satz: $a^{\Phi(n)} \equiv 1 \pmod n$ $a^{k\Phi(n)+1} \equiv a \pmod n$ $a^j \mod n = a^j \mod^{\Phi(n)} \mod n$

5.2 Miller-Rabin-Test

 $(n-1)/a^s=d\in\mathbb{N}$ größtes s, so dass $d\in\mathbb{N}$ Falls n prim, dann entweder $a^d=l\mod n$ oder $\exists r\leq s-1:a^{a^rd}=-1$

5.3 RSA

Erzeugung eines Schlüsselpaares:

- 1. $n = p \cdot q \text{ mit } p \neq q$
- 2. Wähle ersten Schlüssel e zufällig mit $1 < e < \Phi(n)$ und $\mathrm{ggT}(e,\Phi(n)) = 1$
- 3. Berechne privaten Schlüssel d durch $e \cdot d \equiv 1 \mod \Phi(n)$

Verschlüsselung $c=(m^e)\mod n$ Entschlüsselung $(c^d)\mod n=(m^e)^d\mod n=m$ Signatur

5.4 Diffie-Hellman-Schlüsselvereinbarung (1976)

Protokoll um öffentlich einen geheimen Schlüssel k zu vereinbaren. Bietet jedoch keine Authentifizierung, Vereinbarung kann öffentlich abgehört werden ohne Sicherheit zu gefährden.

Beide Partner Alice und Bob vereinbaren eine 1024Bit Primzahl p und eine Basis $g \in \mathrm{GF}(p)$ daraus wird der gemeinsame Schlüssel k abgeleitet.

Alice Wählt geheime Zufallszahl a berechnet $\alpha = g^a \mod p$ schickt α an Bob berechnet $k = \beta^a \mod p$ berechnet $k = \alpha^b \mod p$

5.5 ElGamal-Verfahren (1984)

Öffentlich bekannt: Primzahl p und Basis $g\in \mathrm{GF}(p)$ Jeder Teilnehmer wählt einen privaten Schlüssel d und berechnet daraus den öffentlichen Schlüssel $e=g^d\mod p$

6 Elliptische Kurven, ECC Kryptographie

Sicherheitsvergleich: 160Bit ECC entspricht 1024Bit RSA.

Elliptische Kurve: $u^2 = x^3 + ax + b$

6.1 Protokolle

Definition: Satz von Regeln für den Austausch von Daten zwischen Kommunikationspartnern.

Fiat-Shamir Authentifizierung:

Schlüsselbank: $n=p\cdot q;$ n öffentlich; p,q geheim Für jeden Teilnehmer Zufallszahl z_i und Geheimnis s_i Kerberos (sym.) Trustet Third Party TTP:

Needham Schroeder Protokoll (asym.)

7 IT-Sicherheit

- Safety: Sicher für den Menschen bei Fehlfunktion.
- Secure: Sicher gegen Angriffe.

7.1 Datensicherheit

Quantencomputer: Faktorisierungsprobleme lösbar -¿ RSA unsicher AES 128 unsicher, 256Bit noch als sicher erachtet.