Embedded Systems

c
BTEX

Specificatiol

O(request — Oenter_crit)
Tempord
logic formula

Abstract
Model

Finite state
transition system

Model Checking

Check if model
satisfies specification

No + Counterexample Yes

1.4. Hybrid Automata

Clock is not monoton but can be dynamic.

2. Verification

2.1. Properties
State formulae: properties or formulae which are tru in a specific state
Path formulae: related to paths

0.1. About

Specialized functionality

Constraints on power consumption, real-time scheduling, space, costs
= No single optimization problem!

Different parts and interfaces: communication.

Hardware-Software partitioning

0.2. Modeling and Verification

System <> Model

Create an abstract Model with properties to verify that the system owns
a certain property

1. Modeling

2.2. Temporal Logic

pUq V] p true until g is true
pRq R q true; released after p was true
Op X Next state has p
Op G Globally: p is true for the entire subsequent path
Op F Future: p is true somewhere in the subsequent path
Vp A true on all paths starting from the current path
3p E true on at least one subsequent path
a 2 2 ? 2
a O O O O O
? a 2 ? 2
Xxa O O O O O
aA-b aA-b aA-b b ?
aUb O O O O O
? ? 2 a 2
Fa O O O O O
A A A A A
G a O O O O O
Duality: - X = X—¢p, —Fp=G-p, —-Gp=F-p

Absorbtion: FGF¢ = GF o, GFGyp = FGyp

3.2

Check: f = 30g

Sg set of states that satisfy g ind M

Start with Q" = S

Iteratively add all states that in the next state satisfy g
Result: Sy, if Sy NI # @, then f is satisfied by M

Pre(Q): set of states that have a transition to a state in Q

Post(Q): set of states that can be reached by a transition from a state
in Q

Path 7: infinite sequence of valid states.

Trace(m): sequence of atomic propositions of the path 7

3.9. Languages

A Language L consists of strings of symbols from an alphabet. An alpha-
bet ¥ = {a,, b, c}

Strings: €, aab, baabe

£ is the empty string. 3 is the set of all finite strings over X

Language L = {5, a, b, aa, ab}

3.3.
Trace(s) = Trace(w(Post(s))

1.1. Transistion Systems T'S

Can be used to model ANY system!
Model M = {S,IRL}

Set of States S = {sq, 51, 52,...}
Initial States I C S

Set of Actions Act = {a, B, v, }
Transition Relations R C S X Act X S
Atomic Propositions AP = {a, b, c}
Label L : S — 24F

TS is finite if S and Act are finite sets, otherwise its infinite.

24P = {0, {a}, {b}. {c}. {a. b}, {b, ¢}, {a ¢}, {a, b, c} }

A path 7 is an infinite sequence of states m = sgs1s2...

P, g, f € AP
s [= p: s satisfies p

[s; FgAVi:0<i<j[s; = fll
sE=30f < Ir =s9s1...,Vi > 0:8; = f

3.4. Linear time (LT) properties

Linear time (LT) properties specify traces that a transition system must
exhibit. LT properties describe admissible behaviors of the system under
consideration. A LT property is a subset of {QAP}‘”

3.5. Invariants

An invariant is an LT property that can be expressed by a logic condition
P for states.

The invariant dictates that @ is true for all reachable states

Example: (Mutual Exclusion): @ = —c3 V —co

3.6. Safety Properties

“Nothing bad should happen”

Any infinite run violating the property will have a finite prefix that is
“bad"”

State Property: Look at the bad states.

Py = AgA14z... € 24F)¥|Vj > 0,4, = @

Path property: Look at the bad paths. Find a finite prexif of a path that
will violate the safety property.

Example ATM: money can only be drawn after correct PIN.

A LT Property Py over AP is a safety Property if, Vo &
(24F)% \ Page, Io4ine C o :

TS |= Pgfe iff Trace(T'S) N BadPref(Psfe) = O P is a safety
Property iff Closure(P) = P
Because there is no

3.10. Regular Expressions

a = Dle|Alag + az|ag.az|ax a— L(a) CX*
Empty set () is not the same as empty string &

Basic Ops: Union (+), Concatenation (.), Finite Repition ()

ot =aax=axa (without empty string, means at least one «)

3.10.1 w-Regular Expression
*: finite repetition, “: infinite repitition
General w-regular expression: v = a1
An w-regular Language L, (v) =

BY + ...+ anBy
U L(a)L(Bs)® C =% is
1<i<n

the set of infinite words over 24P

that have an accepting run in ~
3.10.2 w-regular Property E C (2°7)¢

“E is called an w-regular property iff there exists an w-regular expression
v over 28 such that E = L, (v)"

E = (a = bx)“ is no reg. expr. because it contains %

3.11. Nondeterministic Biichi Automata (NBA)

Can recognize w-regular languages

NFA: A word is accepted if a final state is reached by an infinite path.
Nondeterministic Biichi Automata: A word is accepted if a final state is
reached infinitely often by an infinite path.

“For each NBA A there is an w-regular expression ~ with
Lu(A) = Lu()"

3.12.
Let E

1.2. Control System

A control System X is a tuple = = (R™, U, U, f)

state space R™, input set U C R"™, functions from]Ri to U, function
f:R" xU —-R"

Given ¥ and sampling time 7: Transform to Transition State: X = R"
z — o iff fgo(r) =’

2.3. Logic Formula

¢ == truelalpr A p2|-e| O ple1lpa
Implications:
O := trueldp Op := =0—¢p

Examples:

Mutal Exclusion: O(=crity V —critg)
railroad-crossing: J(—train-near — —gate_closed)
progress: [J(Requst — OResponse)

3.7. Closure

The closure of a LT property P is the set of infinite traces whose finite
prefixes are also prefixes of P

This means: All loops and(union) their prefixes that are reached by P.
P is a safety Property iff Closure(P) = P

This means: all loops can be reached without finite prefixes (but may
ALSO be reached with finite prefixes)

3. Model Checking

1.3. Timed Automata

TA=(2,%,C,6, F, Zy)

finite set of clocks C'

state transition function § : Z X © X P — Z x 2€
timing conditions P

initial time 7¢ and transition time 7;

3.1. Basic ldea

Given: a finite transition system 7 over a set of atomic propositions AP
and an LTL formula ¢ over AP.

Model checking question: Does T~ |= ¢ hold?

Try to refute 7 |= ¢ by searching for a path 7 in 7 such that = [~ ¢
or T = -

3.8. Liveness

Liveness properties ensure that something good will eventually happen.
Liveness property can only be violated in infinite time.

P is a liveness property if Closure(P) = (247)«

Because no prefix is ruled out by P

Example: The program eventually terminates

Or: If you request an elevator it will eventually come.

A process will eventually enter its critical section

A process will enter its critical section infinitely often

Every waiting process will eventually enter its critical section

3.13. Checking w-regular Properties
1. construct a NBA A for the bad behavior for the LT property E
2. build the product TS 7~ ® A check

transition system T~ safety property E

arow ...

. never two or Y

Any LT property is equivalent to a conjunction of a safety and a
liveness property

Homepage: www.latex4ei.de — Fehler bitte sofort melden.

von LaTeX4El - Mail: info@latex4ei.de

Stand: 24. Februar 2016 um 18:11 Uhr 1

3.14. Persistence Checking

Given finite transition 7 over AP and persistence condition a

Question: Does T~ |= “eventtually forever a” hold?
Equivalent:

3.14.1 Strongly Connected Component (SCC)
Maximal set of states that are reachable from each other (loops):

Co is non trivial because it has more than one edge.

3.15. ReCap
3.15.1 Modeling

TS to model any system. Properties: reachable, terminal. Paths Typical:
draw a TS of a logic. differential equation of el. or mech. system

Find invariant condition &

Each invariant is a safety property but not vis versa

3.15.2 Language and Automata Theory

Clenees? Theory: Every reg. expr. can be produces by automata.
Typ: Identify/construct/dterminise NFA

Linear temporal Logic

3.15.3 Model checking

Really important! Compute product

3.15.4 Abstraction and Synthesis

Model checking: Does T'S satisfy ¢7?

Synthesis: Is there a controller C' such that T'S x C |= ¢?

Abstraction: T'S < T'S’ such that traces(TS) < traces(TS’)

Homepage: www.latex4ei.de — Fehler bitte sofort melden.

von LaTeX4El - Mail: info@latex4ei.de

Stand: 24. Februar 2016 um 18:11 Uhr

2

Tutorials mw, Ba: AP = {a,b}, L = {L(so) = Tu2Exlia)s=Eg? 11+ 0)* d)

I — (b Tut2, Ex1: c) deterministic if | Post(s, a)| = 1 Tut3, Ex2: s |=p < p € L(s) Tut5, Ex1: a) Tut5, Ex2:

{a}, L(s1) = {b}} Tut2, Ex1: d) Every S has a post state w @ i

Tutl, Ex2: b) « in left and right TS are not the same. c) same name,) y P Tut4, Ex1: a(a + €)(a, ba)® Tut4, Ex2: a) b* liveness, b) b x (a + Tut6, Exl: a) s2, s3 b) s1, 82,54 c) s1,s4 d) sa,s3,s4 €) s f)all
Tut2, Exl:e) P = {s € S‘ sl <0.1} a, b)bx safety c) (ab)“ liveness d) none Tut4, Ex3: a) ? b) 0(01)% c) statesg) @ h) 0 i) s1, s2,s3 j) O Tut6, Ex2:

same signals! chack all transitions for every state

Homepage: www.latex4ei.de — Fehler bitte sofort melden. von LaTeX4El - Mail: info@latex4ei.de Stand: 24. Februar 2016 um 18:11 Uhr 3

