
4ei*
* kann Spuren von Katzen enthalten
 nicht für Humorallergiker geeignet
 alle Angaben ohne Gewehr

Embedded Systems

System

Abstract
Model

Requirements

Specification

Check if model
satisfies specification

Model Checking

YesNo + Counterexample

Finite state
transition system

Temporal
logic formula

?

Is system
design

correct?

0.1. About
Specialized functionality
Constraints on power consumption, real-time scheduling, space, costs
⇒ No single optimization problem!
Different parts and interfaces: communication.
Hardware-Software partitioning

0.2. Modeling and Verification
System↔ Model
Create an abstract Model with properties to verify that the system owns
a certain property

1. Modeling

1.1. Transistion Systems TS
Can be used to model ANY system!
Model M =

{
S, IRL

}
Set of States S =

{
s0, s1, s2, ...

}
Initial States I ⊆ S
Set of Actions Act =

{
α, β, γ, ...

}
Transition Relations R ⊆ S × Act× S
Atomic Propositions AP =

{
a, b, c

}
Label L : S → 2AP

TS is finite if S and Act are finite sets, otherwise its infinite.
2AP =

{
∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}

}
A path π is an infinite sequence of states π = s0s1s2...

1.2. Control System

A control System Σ is a tuple Σ = (Rn, U,U, f)

state space Rn, input set U ⊆ Rn, functions from R+
= to U , function

f : Rn × U → Rn

Given Σ and sampling time τ : Transform to Transition State: X = Rn

x→ x′ iff ξxv(τ) = x′

1.3. Timed Automata
TA = (Z,Σ, C, δ, F, Z0)
finite set of clocks C
state transition function δ : Z × Σ× P → Z × 2C

timing conditions P
initial time τ0 and transition time τi

1.4. Hybrid Automata
Clock is not monoton but can be dynamic.

2. Verification

2.1. Properties
State formulae: properties or formulae which are tru in a specific state
Path formulae: related to paths

2.2. Temporal Logic

pUq U p true until q is true

pRq R q true; released after p was true

©p X Next state has p

�p G Globally: p is true for the entire subsequent path

♦p F Future: p is true somewhere in the subsequent path

∀p A true on all paths starting from the current path

∃p E true on at least one subsequent path

Duality: ¬Xϕ = X¬ϕ, ¬Fϕ = G¬ϕ, ¬Gϕ = F¬ϕ
Absorbtion: FGFϕ = GFϕ, GFGϕ = FGϕ

p, g, f ∈ AP
s |= p: s satisfies p

s |= p⇔ p ∈ L(s)
s |= f ∧ g ⇔ s |= f ∧ s |= g
s |= f ∧ g ⇔ s |= f ∧ s |= g
s |= ∃© f ⇔ ∃π = s0s1... : s1 |= f
s |= ∃(fUg)⇔ ∃π = s0s1..., ∃j ≥ 0
[sj |= g ∧ ∀i : 0 ≤ i < j[si |= f]]
s |= ∃�f ⇔ ∃π = s0s1..., ∀i > 0 : si |= f

2.3. Logic Formula
ϕ ::= true|a|ϕ1 ∧ ϕ2|¬ϕ| © ϕ|ϕ1Uϕ2
Implications:
♦ϕ := trueUϕ �ϕ := ¬♦¬ϕ

Examples:
Mutal Exclusion: �(¬crit1 ∨ ¬crit2)
railroad-crossing: �(¬train near→ ¬gate closed)
progress: �(Requst→ ♦Response)

3. Model Checking

3.1. Basic Idea
Given: a finite transition system T over a set of atomic propositions AP
and an LTL formula ϕ over AP.
Model checking question: Does T |= ϕ hold?
Try to refute T |= ϕ by searching for a path π in T such that π 6|= ϕ
or π |= ¬ϕ

3.2.
Check: f = ∃♦g
Sg set of states that satisfy g ind M

Start with Q′ = Sg
Iteratively add all states that in the next state satisfy g
Result: Sf , if Sf ∩ I 6= ∅, then f is satisfied by M

Pre(Q): set of states that have a transition to a state in Q
Post(Q): set of states that can be reached by a transition from a state
in Q
Path π: infinite sequence of valid states.
Trace(π): sequence of atomic propositions of the path π

3.3.
Trace(s) = Trace(π(Post(s))

3.4. Linear time (LT) properties
Linear time (LT) properties specify traces that a transition system must
exhibit. LT properties describe admissible behaviors of the system under
consideration. A LT property is a subset of {2AP}ω

3.5. Invariants
An invariant is an LT property that can be expressed by a logic condition
Φ for states.
The invariant dictates that Φ is true for all reachable states
Example: (Mutual Exclusion): Φ = ¬c1 ∨ ¬c2
3.6. Safety Properties
“Nothing bad should happen”
Any infinite run violating the property will have a finite prefix that is
“bad”
State Property: Look at the bad states.
Pinv = A0A1A2... ∈ (2AP)ω|∀j ≥ 0, Aj |= Φ
Path property: Look at the bad paths. Find a finite prexif of a path that
will violate the safety property.
Example ATM: money can only be drawn after correct PIN.

A LT Property Psafe over AP is a safety Property if, ∀σ ∈
(2AP)ω \ Psafe, ∃σ̂finit ⊂ σ :

TS |= Psafe iff Trace(TS) ∩ BadPref(Psafe) = ∅ P is a safety
Property iff Closure(P) = P
Because there is no

3.7. Closure
The closure of a LT property P is the set of infinite traces whose finite
prefixes are also prefixes of P
This means: All loops and(union) their prefixes that are reached by P .
P is a safety Property iff Closure(P) = P
This means: all loops can be reached without finite prefixes (but may
ALSO be reached with finite prefixes)

3.8. Liveness
Liveness properties ensure that something good will eventually happen.
Liveness property can only be violated in infinite time.
P is a liveness property if Closure(P) = (2AP)ω

Because no prefix is ruled out by P
Example: The program eventually terminates
Or: If you request an elevator it will eventually come.
A process will eventually enter its critical section
A process will enter its critical section infinitely often
Every waiting process will eventually enter its critical section

Any LT property is equivalent to a conjunction of a safety and a
liveness property

3.9. Languages
A Language L consists of strings of symbols from an alphabet. An alpha-
bet Σ =

{
a, b, c

}
Strings: ε, aab, baabc
ε is the empty string. Σ∗ is the set of all finite strings over Σ
Language L =

{
ε, a, b, aa, ab

}
3.10. Regular Expressions

α ::= ∅|ε|A|α1 + α2|α1.α2|α∗ α 7→ L(α) ⊆ Σ∗

Empty set ∅ is not the same as empty string ε
Basic Ops: Union (+), Concatenation (.), Finite Repition (∗)
α+ = αα∗ = α ∗ α (without empty string, means at least one α)

3.10.1 ω-Regular Expression

*: finite repetition, ω : infinite repitition
General ω-regular expression: γ = α1β

ω
1 + ... + αnβ

ω
n

An ω-regular Language Lω(γ) =
⋃

1≤i≤n
L(αi)L(βi)

ω ⊆ Σω is

the set of infinite words over 2AP that have an accepting run in γ

3.10.2 ω-regular Property E ⊆ (2AP)ω

“E is called an ω-regular property iff there exists an ω-regular expression
γ over 2AP such that E = Lω(γ)”
E = (a ∗ b∗)ω is no reg. expr. because it contains εω

3.11. Nondeterministic Büchi Automata (NBA)
Can recognize ω-regular languages
NFA: A word is accepted if a final state is reached by an infinite path.
Nondeterministic Büchi Automata: A word is accepted if a final state is
reached infinitely often by an infinite path.

“For each NBA A there is an ω-regular expression γ with
Lω(A) = Lω(γ)”

3.12.
Let E

3.13. Checking ω-regular Properties
1. construct a NBA A for the bad behavior for the LT property E
2. build the product TS T ⊗ A check

11q0

y

Homepage: www.latex4ei.de – Fehler bitte sofort melden. von LaTeX4EI - Mail: info@latex4ei.de Stand: 24. Februar 2016 um 18:11 Uhr 1

3.14. Persistence Checking
Given finite transition T over AP and persistence condition a

Question: Does T |= “eventtually forever a” hold?
Equivalent:

3.14.1 Strongly Connected Component (SCC)

Maximal set of states that are reachable from each other (loops):

C2 is non trivial because it has more than one edge.

3.15. ReCap

3.15.1 Modeling

TS to model any system. Properties: reachable, terminal. Paths Typical:
draw a TS of a logic. differential equation of el. or mech. system

Find invariant condition Φ
Each invariant is a safety property but not vis versa

3.15.2 Language and Automata Theory

Clenees? Theory: Every reg. expr. can be produces by automata.
Typ: Identify/construct/dterminise NFA
Linear temporal Logic

3.15.3 Model checking

Really important! Compute product

3.15.4 Abstraction and Synthesis

Model checking: Does TS satisfy ϕ?
Synthesis: Is there a controller C such that TS × C |= ϕ?

Abstraction: TS ≤ TS′ such that traces(TS) ≤ traces(TS′)

Homepage: www.latex4ei.de – Fehler bitte sofort melden. von LaTeX4EI - Mail: info@latex4ei.de Stand: 24. Februar 2016 um 18:11 Uhr 2

Tutorials Tut1, Ex1: AP =
{
a, b
}

, L =
{
L(s0) ={

a
}
, L(s1) =

{
b
}}

Tut1, Ex2: b) α in left and right TS are not the same. c) same name,
same signals! chack all transitions for every state

Tut2, Ex1: a) S = R2

Tut2, Ex1: c) deterministic if |Post(s, α)| = 1
Tut2, Ex1: d) Every S has a post state
Tut2, Ex1: e) P1 =

{
s ∈ S

∣∣ ‖s‖ ≤ 0.1
} Tut3, Ex2: s |= p⇔ p ∈ L(s)

Tut4, Ex1: a(a + ε)(a, ba)ω Tut4, Ex2: a) bω liveness, b) b ∗ (a +
a, b)b∗ safety c) (ab)ω liveness d) none Tut4, Ex3: a) ? b) 0(01)ω c)

1(1 + 0)ω d)

Tut5, Ex1: a) Tut5, Ex2:

Tut6, Ex1: a) s2, s3 b) s1, s2, s4 c) s1, s4 d) s2, s3, s4 e) s1 f) all
states g) ∅ h) ∅ i) s1, s2, s3 j) ∅ Tut6, Ex2:

Homepage: www.latex4ei.de – Fehler bitte sofort melden. von LaTeX4EI - Mail: info@latex4ei.de Stand: 24. Februar 2016 um 18:11 Uhr 3

